会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 81. 发明申请
    • SEMICONDUCTOR DEVICE AND METHOD FOR PRODUCTION THEREOF
    • 半导体器件及其制造方法
    • WO2008059350A2
    • 2008-05-22
    • PCT/IB2007/003477
    • 2007-11-13
    • TOYOTA JIDOSHA KABUSHIKI KAISHATANAKA, Hiroaki
    • TANAKA, Hiroaki
    • H01L29/739H01L29/10H01L21/331
    • H01L29/7397H01L29/1095H01L29/66348
    • A semiconductor device has a drift region (20) (third semiconductor region) of an n-type (first conductivity type); a body region (50) (second semiconductor region) of a p-type (second conductivity type) provided on the drift region (20); an emitter region (60) (first semiconductor region) of the n-type formed in the top surface of the body region (50) and separated from the drift region (20) by the body region (50); a trench (14) extending from the top surface of the emitter region (60) through the body region (50) into the drift region (20); a trench gate electrode (13) filled in the trench (14); and a semiconductor region (70) (fourth semiconductor region) of the p-type formed in contact with side faces of the trench protruding into the drift region (20). Therefore, the semiconductor device can suppress a surge voltage at turn-off, and can be produced easily.
    • 半导体器件具有n型(第一导电型)的漂移区域(20)(第三半导体区域); 设置在漂移区域(20)上的p型(第二导电型)的体区(50)(第二半导体区域); 所述n型的发射极区域(60)(第一半导体区域)形成在所述主体区域(50)的顶表面中并且通过所述主体区域(50)与所述漂移区域(20)分离。 从所述发射极区域(60)的顶表面延伸通过所述体区(50)延伸到所述漂移区域(20)中的沟槽(14)。 填充在沟槽(14)中的沟槽栅电极(13); 以及形成为与突出到漂移区域(20)中的沟槽的侧面接触的p型半导体区域(第四半导体区域)(第四半导体区域)。 因此,半导体装置能够抑制关断时的浪涌电压,能够容易地制造。
    • 82. 发明申请
    • TRENCH-GATE SEMICONDUCTOR DEVICES AND THEIR MANUFACTURE
    • TRENCH-GATE半导体器件及其制造
    • WO2003023863A2
    • 2003-03-20
    • PCT/IB2002/003733
    • 2002-09-11
    • KONINKLIJKE PHILIPS ELECTRONICS N.V.
    • PEAKE, Steven, T.PETKOS, GeorgiosRUTTER, PhilipGROVER, Raymond, J.
    • H01L29/78
    • H01L29/7813H01L29/1095H01L29/402H01L29/407H01L29/4232H01L29/42372H01L29/4238H01L29/66348H01L29/66734H01L29/7811H01L2924/13055H01L2924/13091H01L2924/30105
    • A device termination structure, and/or a gate bus-bar structure, and/or other end structure is provided for at least one group of cells in a cellular trench-gate semiconductor device, for example a power MOSFET. In this end structure, a conductive layer (11c), for example of polysilicon gate material, extends on an intermediate insulating layer (55) over a higher-doped (P+) end region (150) of the channel-accommodating region (15). This insulating layer (55) comprises an area (51e) of a trench-etch mask (51), preferably comprising silicon nitride, that is of greater thickness than the gate dielectric layer (17). A window (51a) extends through the trench-etch mask (51) ata location where an end trench (20e) extends into the P+ region (150). The end trench (20e) is an extension of the insulated gate trench (20) into the P+ region (150) and accommodates an extension (11e) of the trench-gate (11). The conductive layer (11c) is connected to the trench-gate extension (11e) via the window (51e). The lateral extent of the conductive layer (11c) terminates in an edge (11a,11b) that is defined on the trench-etch mask (51).
    • 为蜂窝状沟槽栅极半导体器件(例如功率MOSFET)中的至少一组电池提供器件端接结构和/或栅极汇流条结构和/或其它端部结构。 在该端部结构中,例如多晶硅栅极材料的导电层(11c)在通道容纳区域(15)的较高掺杂(P +)端部区域(150)上的中间绝缘层(55)上延伸, 。 该绝缘层(55)包括沟槽蚀刻掩模(51)的优选地包括氮化硅的区域(51e),其厚度大于栅极电介质层(17)的厚度。 窗口(51a)在端部沟槽(20e)延伸到P +区域(150)的位置处延伸穿过沟槽蚀刻掩模(51)。 端部沟槽(20e)是绝缘栅极沟槽(20)延伸到P +区域(150)中并且容纳沟槽栅极(11)的延伸部分(11e)的延伸。 导电层(11c)经由窗口(51e)连接到沟槽栅延伸部(11e)。 导电层(11c)的横向延伸终止在限定在沟槽蚀刻掩模(51)上的边缘(11a,11b)中。
    • 83. 发明申请
    • MANUFACTURE OF SEMICONDUCTOR DEVICES WITH SCHOTTKY BARRIERS
    • 半导体器件与肖特基屏障的制造
    • WO2003010812A1
    • 2003-02-06
    • PCT/IB2002/002892
    • 2002-07-24
    • KONINKLIJKE PHILIPS ELECTRONICS N.V.
    • GROVER, Raymond, J.PEAKE, Steven, T.
    • H01L21/329
    • H01L29/7813H01L21/266H01L29/0619H01L29/0692H01L29/0696H01L29/407H01L29/66143H01L29/66348H01L29/7806H01L29/872H01L29/8725
    • In the manufacture of trench-gate power MOSFETs, trenched Schottky rectifiers and other devices including a Schottky barrier, a guard region (15s), trenched insulated electrode (11s) and the Schottky barrier (80) are self-aligned with respect to each other by providing spacers (52) to form a narrow window (52a) at a wider window (51a) in a mask pattern (51, 51s) that masks where the Schottky barrier (80) is to be formed. The trenched insulated electrode (11s) is formed by etching a trench (20) at the narrow window (52a) and by providing insulating material (17) and then electrode material (11s) in the trench. The guard region (15s) is provided by introducing dopant (61) via the wider window (51a). The mask pattern (51, 51s) masks the underlying body portion against this dopant introduction and is sufficiently wide (y8) to prevent the dopant (61) from extending laterally into the area where the Schottky barrier (80) is to be formed. Then at least the mask pattern (51, 51s) is removed before depositing a Schottky electrode (33).
    • 在沟槽栅功率MOSFET的制造中,沟槽肖特基整流器和其它器件包括肖特基势垒,保护区(15s),沟槽绝缘电极(11s)和肖特基势垒(80)彼此自对准 通过在掩模图案(51,51s)中的宽窗口(51a)处形成窄窗口(52a)以形成肖特基势垒(80)的掩模(52,51)。 沟槽绝缘电极(11s)通过在窄窗口(52a)处蚀刻沟槽(20)并且通过在沟槽中提供绝缘材料(17)和电极材料(11s)来形成。 通过较宽窗口(51a)引入掺杂剂(61)来提供保护区域(15s)。 掩模图案(51,51s)掩盖下面的主体部分抵抗该掺杂剂引入,并且足够宽(y8)以防止掺杂剂(61)横向延伸到要形成肖特基势垒(80)的区域中。 然后在沉积肖特基电极(33)之前至少除去掩模图案(51,51s)。
    • 84. 发明申请
    • MOS-GATED POWER DEVICE HAVING SEGMENTED TRENCH AND EXTENDED DOPING ZONE AND PROCESS FOR FORMING SAME
    • 具有分段式铁路和扩展区域的MOS选通电力装置及其形成方法
    • WO0237569A9
    • 2002-12-05
    • PCT/US0131840
    • 2001-10-11
    • FAIRCHILD SEMICONDUCTOR
    • KOCON CHRISTOPHER BGREBS THOMAS ECUMBO JOSEPH LRIDLEY RODNEY S
    • H01L29/749H01L21/331H01L21/336H01L29/06H01L29/10H01L29/423H01L29/739H01L29/78H01L29/00
    • H01L29/66348H01L29/0619H01L29/0634H01L29/0653H01L29/1095H01L29/42368H01L29/7397H01L29/749H01L29/7813H01L2924/0002H01L2924/00
    • A trench MOS-gated device comprises a doped monocrystalline semiconductor substrate that includes an upper layer and is of a first conduction type. An extended trench in the substrate in the upper layer comprises two segments having differing widths relative to one another: a bottom segment of lesser width filled with a dielectric material, and an upper segment of greater width lined with a dielectric material and substantially filled with a conductive material, the filled upper segment of the trench forming a gate region. An extended doped zone of a second opposite conduction type extends from an upper surface into the upper layer of the substrate only on one side of the trench, and a doped well region of the second conduction type overlying a drain zone of the first conduction type is disposed in the upper layer on the opposite side of the trench. The drain zone is substantially insulated from the extended zone by the dielectric-filled bottom segment of the trench. A heavily doped source region of the first conduction type and a heavily doped body region of the second conduction type is disposed at the upper surface of the well region only on the side of said trench opposite doped extended zone. An interlevel dielectric layer is disposed on the upper surface overlying the gate and source regions, and a metal layer disposed on the upper surface of the upper layer and the interlevel dielectric layer is in electrical contact with the source and body regions and the extended zone. A process for constructing a trench MOS-gated device comprises: forming in a semiconductor substrate an extended trench that comprises an upper segment and a bottom segment, wherein the bottom segment has a lesser width relative to a greater width of the trench upper segment and extends to a depth corresponding to the total depth of the extended trench. The bottom segment of the trench is substantially filled with dielectric material. The trench upper segment has a floor and sidewalls comprising dielectric material and is substantially filled with a conductive material to form a gate region. A heavily doped source region of the first conduction type and a heavily doped body region of the second conduction type are formed in a surface well region on the side of the extended trench opposite an extended doped zone.
    • 沟槽MOS门控器件包括掺杂的单晶半导体衬底,其包括上层并且是第一导电类型。 在上层中的衬底中的延伸沟槽包括相对于彼此具有不同宽度的两个区段:填充有介电材料的较小宽度的底部区段和宽度较大的上部区段,其内衬有电介质材料并基本上填充有 导电材料,填充的沟槽的上部段形成栅极区域。 第二相对导电类型的扩展掺杂区仅在沟槽的一侧从上表面延伸到衬底的上层,并且覆盖第一导电类型的漏极区的第二导电类型的掺杂阱区是 设置在沟槽相对侧的上层中。 漏极区域通过沟槽的电介质填充的底部区段与延伸区域基本绝缘。 第一导电类型的重掺杂源极区域和第二导电类型的重掺杂体区域仅在阱区域相对的掺杂延伸区域的侧面上设置在阱区域的上表面。 层叠电介质层设置在覆盖栅极和源极区域的上表面上,并且设置在上层的上表面上的金属层和层间电介质层与源区和主体区域以及延伸区域电接触。 用于构造沟槽MOS门控器件的工艺包括:在半导体衬底中形成包括上部段和底部段的延伸沟槽,其中底部区段相对于沟槽上段的较大宽度具有较小的宽度,并且延伸 达到对应于延伸沟槽的总深度的深度。 沟槽的底部段基本上被介电材料填充。 沟槽上段具有包括电介质材料的底板和侧壁,并且基本上填充有导电材料以形成栅极区域。 第一导电类型的重掺杂源极区域和第二导电类型的重掺杂体区域形成在与延伸掺杂区域相对的延伸沟槽侧的表面阱区域中。
    • 87. 发明申请
    • MANUFACTURE OF TRENCH-GATE SEMICONDUCTOR DEVICES
    • TRANCH-GATE半导体器件的制造
    • WO0141206A2
    • 2001-06-07
    • PCT/EP0011290
    • 2000-11-10
    • KONINKL PHILIPS ELECTRONICS NV
    • HIJZEN ERWIN ATIMMERING CORNELIS ECUTTER JOHN R
    • H01L29/78H01L21/331H01L21/336H01L21/338
    • H01L29/66848H01L29/66348H01L29/66666
    • In the manufacture of a trench-gate semiconductor device, for example a MOSFET or an IGBT, a starting semiconductor body (10) has two top layers (13, 15) provided for forming the source and body regions. Gate material (11') is provided in a trench (20) with a trench etchant mask (51, Figure 2) still present so that the gate material (11') forms a protruding step (30) from the adjacent surface (10a) of the semiconductor body, and a side wall spacer (32) is then formed in the step (30) to replace the mask (51). The source region (13) is formed self-aligned with the protruding trench-gate structure with a lateral extent determined by the spacer (32, Figure 5), and the gate (11) is then provided with an insulating overlayer (18, Figure 6). Forming the sidewall spacer (32) when the protruding trench-gate structure has a well-defined edge provided by the gate material (11') allows better definition of the source region (13) compared with a prior-art process in which the gate insulating overlayer is provided in the trench before causing the trench-gate structure to have the protruding step for the sidewall spacer.
    • 在制造沟槽栅极半导体器件例如MOSFET或IGBT时,起始半导体本体(10)具有两个用于形成源极和体区的顶层(13,15)。 栅极材料(11')设置在沟槽(20)中,其沟槽蚀刻剂掩模(图2)仍然存在,使得栅极材料(11')从邻近的表面(10a)形成突出的台阶(30) 并且在步骤(30)中形成侧壁间隔物(32)以更换掩模(51)。 源极区域(13)形成为与突出的沟槽栅极结构自对准,具有由间隔物(32,图5)确定的横向范围,并且栅极(11)然后设置有绝缘覆盖层 6)。 当突出的沟槽栅极结构具有由栅极材料(11')提供的良好限定的边缘时,形成侧壁间隔物(32)允许源区域(13)的更好的定义与现有技术的工艺相比,其中栅极 在使沟槽栅结构具有侧壁间隔物的突出步骤之前,在沟槽中设置绝缘覆层。
    • 89. 发明申请
    • 半導体装置
    • 半导体器件
    • WO2016204126A1
    • 2016-12-22
    • PCT/JP2016/067597
    • 2016-06-13
    • 富士電機株式会社
    • 今川 鉄太郎
    • H01L29/78H01L21/265H01L21/336H01L29/739
    • H01L29/1095H01L21/265H01L29/32H01L29/66348H01L29/7397H01L29/78
    • スイッチング時の発振の抑制と、大電流短絡耐量の向上とを両立させることは難しい。第1の面と第1の面の反対側に位置する第2の面とを有する第1導電型の半導体層と、第1導電型の半導体層の第1の面に接して設けられた第2導電型の半導体層とを備え、第1導電型の半導体層は、第1の面から第2の面への第1方向の異なる位置において、複数の不純物濃度ピークを有し、第1方向における第1導電型の半導体層と第2導電型の半導体層との接合界面である第1の面から、複数の不純物濃度ピークのうち第1の面に1番目に近い第1番目の不純物濃度ピークと、第1の面に2番目に近い第2番目の不純物濃度ピークとの境界までにおける積分濃度が、臨界積分濃度以下である、半導体装置を提供する。
    • 实现对开关中的振荡的抑制和对大电流短路的耐受性的改善是困难的。 提供一种半导体器件,包括:第一导电型半导体层,其具有位于与第一表面相对的第一表面和第二表面; 以及第二导电型半导体层,设置成与第一导电型半导体层的第一表面接触,其中第一导电类型半导体层在第一方向上的不同位置处具有多个杂质浓度峰值 从第一表面到第二表面的第一表面,以及作为第一方向上的第一导电型半导体层和第二导电型半导体层之间的接合边界面的第一表面的积分浓度, 第一杂质浓度峰值和第二杂质浓度峰值等于或小于临界积分浓度,其中第一杂质浓度峰值最接近第一表面,第二杂质浓度峰值是最接近第一表面的第二杂质浓度峰值, 的多个杂质浓度峰。