会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • ANTIFUSE ELEMENT USING SPACER BREAKDOWN
    • 防爆元件使用间隔开
    • WO2015147782A1
    • 2015-10-01
    • PCT/US2014/031592
    • 2014-03-24
    • INTEL CORPORATIONCHANG, TingJAN, Chia-HongHAFEZ, Walid, M.
    • CHANG, TingJAN, Chia-HongHAFEZ, Walid, M.
    • H01L23/62G11C29/04
    • H01L23/5252G11C11/005G11C17/143G11C17/16G11C17/165H01L23/62H01L27/1021H01L27/11206H01L2924/0002H01L2924/00
    • Techniques and circuitry are disclosed for efficiently implementing programmable memory array circuit architectures, including both non- volatile and volatile memories. The memory circuitry employs an antifuse scheme that includes an array of IT bitcells, wherein each bitcell effectively contains one gate or transistor-like device that provides both an antifuse element and a selector device for that bitcell. In particular, the bitcell device has asymmetric trench-based source/drain contacts such that one contact forms a capacitor in conjunction with the spacer and gate metal, and the other contact forms a diode in conjunction with a doped diffusion area and the gate metal. The capacitor serves as the antifuse element of the bitcell, and can be programmed by breaking down the spacer. The diode effectively provides a Schottky junction that serves as a selector device which can eliminate program and read disturbs from bitcells sharing the same bitline/wordline.
    • 公开了用于有效实现包括非易失性和易失性存储器的可编程存储器阵列电路架构的技术和电路。 存储器电路采用包括IT比特单元阵列的反熔丝方案,其中每个位单元有效地包含一个栅极或类似晶体管的器件,该器件为该位单元提供反熔丝元件和选择器器件。 特别地,位单元器件具有不对称的基于沟槽的源极/漏极触点,使得一个触点与间隔物和栅极金属结合形成电容器,而另一个触点与掺杂扩散区域和栅极金属结合形成二极管。 电容器用作位单元的反熔断元件,并且可以通过分隔间隔来编程。 二极管有效地提供肖特基结,其作为选择器装置,其可以消除共享相同位线/字线的位单元的程序和读取干扰。
    • 6. 发明申请
    • NON-VOLATILE STORAGE ELEMENT HAVING DUAL WORK-FUNCTION ELECTRODES
    • 具有双功能电极的非易失性存储元件
    • WO2012082346A1
    • 2012-06-21
    • PCT/US2011/062254
    • 2011-11-28
    • INTEL CORPORATIONHAFEZ, Walid, M.RAHMAN, Anisur
    • HAFEZ, Walid, M.RAHMAN, Anisur
    • H01L27/115H01L21/8247
    • H01L29/792G11C16/0466H01L21/28282H01L28/40H01L29/4234H01L29/513H01L45/00
    • A non-volatile storage element and a method of forming the storage element. The non-volatile storage element comprises: a first electrode including a first material having a first work function; a second electrode including a second material having a second work function higher than the first work function; a first dielectric disposed between the first electrode and the second electrode, the first dielectric having a first bandgap; a second dielectric disposed between the first dielectric and the second electrode, the second dielectric having a second bandgap wider than the first bandgap and being disposed such that a quantum well is created in the first dielectric; and a third dielectric disposed between the first electrode and the first dielectric, the third dielectric being thinner than the second dielectric and having a third bandgap wider than the first bandgap.
    • 非易失性存储元件和形成存储元件的方法。 非易失性存储元件包括:第一电极,其包括具有第一功函数的第一材料; 第二电极,包括具有高于第一功函数的第二功函数的第二材料; 设置在所述第一电极和所述第二电极之间的第一电介质,所述第一电介质具有第一带隙; 设置在所述第一电介质和所述第二电极之间的第二电介质,所述第二电介质具有比所述第一带隙宽的第二带隙,并且被布置为使得在所述第一电介质中产生量子阱; 以及设置在所述第一电极和所述第一电介质之间的第三电介质,所述第三电介质比所述第二电介质薄,并且具有比所述第一带隙宽的第三带隙。
    • 7. 发明申请
    • PRECISION RESISTOR FOR NON-PLANAR SEMICONDUCTOR DEVICE ARCHITECTURE
    • 非平面半导体器件结构精密电阻器
    • WO2014046755A1
    • 2014-03-27
    • PCT/US2013/046395
    • 2013-06-18
    • INTEL CORPORATION
    • YEH, Jeng-Ya, D.VANDERVOORN, Peter, J.HAFEZ, Walid, M.JAN, Chia-HongTSAI, CurtisPARK, Joodong
    • H01L29/78H01L21/336
    • H01L21/823431H01L27/0629H01L27/0886H01L28/20H01L29/66545H01L29/66795
    • Precision resistors for non-planar semiconductor device architectures are described. In a first example, a semiconductor structure includes first and second semiconductor fins disposed above a substrate. A resistor structure is disposed above the first semiconductor fin but not above the second semiconductor fin. A transistor structure is formed from the second semiconductor fin but not from the first semiconductor fin. In a second example, a semiconductor structure includes first and second semiconductor fins disposed above a substrate. An isolation region is disposed above the substrate, between the first and second semiconductor fins, and at a height less than the first and second semiconductor fins. A resistor structure is disposed above the isolation region but not above the first and second semiconductor fins. First and second transistor structures are formed from the first and second semiconductor fins, respectively.
    • 描述了用于非平面半导体器件结构的精密电阻器。 在第一示例中,半导体结构包括设置在基板上方的第一和第二半导体翅片。 电阻器结构设置在第一半导体鳍片上方,但不在第二半导体鳍片之上。 晶体管结构由第二半导体鳍形成,但不由第一半导体鳍形成。 在第二示例中,半导体结构包括设置在基板上方的第一和第二半导体翅片。 隔离区设置在基板之上,位于第一和第二半导体翅片之间,并且在小于第一和第二半导体翅片的高度处。 电阻器结构设置在隔离区域上方,但不在第一和第二半导体鳍片之上。 第一和第二晶体管结构分别由第一和第二半导体鳍形成。
    • 8. 发明申请
    • TRANSISTOR WITH THERMAL PERFORMANCE BOOST
    • 具有热性能增强的晶体管
    • WO2017171844A1
    • 2017-10-05
    • PCT/US2016/025602
    • 2016-04-01
    • INTEL CORPORATION
    • LEE, Chen-GuanHAFEZ, Walid, M.PARK, JoodongJAN, Chia-HongCHANG, Hsu-Yu
    • H01L29/78H01L21/336
    • Techniques are disclosed for forming a transistor with enhanced thermal performance. The enhanced thermal performance can be derived from the inclusion of thermal boost material adjacent to the transistor, where the material can be selected based on the transistor type being formed. In the case of PMOS devices, the adjacent thermal boost material may have a high positive linear coefficient of thermal expansion (CTE) (e.g., greater than 5 ppm/ C at around 20 C) and thus expand as operating temperatures increase, thereby inducing compressive strain on the channel region of an adjacent transistor and increasing carrier (e.g., hole) mobility. In the case of NMOS devices, the adjacent thermal boost material may have a negative linear CTE (e.g., less than 0 ppm/ C at around 20 C) and thus contract as operating temperatures increase, thereby inducing tensile strain on the channel region of an adjacent transistor and increasing carrier (e.g., electron) mobility.
    • 公开了用于形成具有增强的热性能的晶体管的技术。 增强的热性能可以通过包括与晶体管相邻的热增强材料来获得,其中材料可以基于正在形成的晶体管类型来选择。 在PMOS器件的情况下,相邻的热增强材料可以具有高的正线性热膨胀系数(CTE)(例如,在20℃附近大于5ppm /℃),并且因此随着工作温度增加而膨胀,由此引起压缩 在相邻晶体管的沟道区上的应变并且增加载流子(例如,空穴)迁移率。 在NMOS器件的情况下,相邻的热增强材料可以具有负的线性CTE(例如,在约20℃下小于0ppm /℃),并且因此随着工作温度增加而收缩,由此在 相邻的晶体管和增加的载流子(例如电子)迁移率。