会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • SILICON CARBIDE SEMICONDUCTOR DEVICES HAVING BURIED SILICON CARBIDE CONDUCTION BARRIER LAYERS THEREIN AND METHODS OF FORMING SAME
    • 带有碳化硅碳化硅导体阻挡层的硅碳化硅半导体器件及其形成方法
    • WO1996015557A1
    • 1996-05-23
    • PCT/US1995014580
    • 1995-11-09
    • NORTH CAROLINA STATE UNIVERSITYBALIGA, Bantval, Jayant
    • NORTH CAROLINA STATE UNIVERSITY
    • H01L29/24
    • H01L29/7806H01L21/0445H01L29/0649H01L29/1079H01L29/1608H01L29/66068H01L29/7802H01L29/812H01L29/8122Y10S438/931
    • A silicon carbide semiconductor device includes a silicon carbide substrate (12), an active layer (15) in the substrate and a silicon carbide buried (18) layer which provides a conduction barrier between the substrate and at least a portion of the active layer. The buried layer (18) is preferably formed by implanting second conductivity type dopants into the substrate so that a P-N junction barrier is provided between the active layer (15) and the substrate (12). The buried layer (18) may also be formed by implanting electrically inactive ions into the substrate so that a relatively high resistance barrier is provided between the active layer (15) and the substrate (12). The electrically inactive ions are preferably selected from the group consisting of argon, neon, carbon and silicon, although other ions which are electrically inactive in silicon carbide may be used. The implantation of the electrically inactive ions is designed to cause the formation of a large number of electrically active deep level defects in the buried layer, particularly near the peak of the implant profile which is Gaussian in shape. These steps can be utilized in the formation of a variety of silicon carbide semiconductor devices such as lateral field effect devices and devices having both vertical and lateral active regions which are designed for high power applications. In particular, lateral silicon carbide-on-insulator enhancement and depletion mode field effect transistors (FETs) can be formed in accordance with the present invention. Vertical silicon carbide power MESFET devices can also be formed by incorporating a silicon carbide source region in the active layer at the first face of a silicon carbide substrate and a drain region at the second face and by providing a Schottky barrier gate electrode on the first face.
    • 碳化硅半导体器件包括碳化硅衬底(12),衬底中的有源层(15)和在衬底和有源层的至少一部分之间提供导电阻挡层的碳化硅掩埋(18)层。 掩埋层(18)优选通过将第二导电类型的掺杂剂注入衬底中形成,使得在有源层(15)和衬底(12)之间提供P-N结屏障。 掩埋层(18)也可以通过将非活性离子注入衬底而形成,使得在有源层(15)和衬底(12)之间提供相对较高的电阻屏障。 电惰性离子优选选自氩,氖,碳和硅,尽管可以使用在碳化硅中电惰性的其它离子。 电惰性离子的注入被设计成在掩埋层中形成大量的电活性深层缺陷,特别是在高斯形状的植入物轮廓的峰附近。 这些步骤可以用于形成各种碳化硅半导体器件,例如横向场效应器件和具有设计用于高功率应用的垂直和横向有源区的器件。 特别地,根据本发明可以形成横向碳化硅 - 绝缘体上的增强和耗尽型场效应晶体管(FET)。 垂直碳化硅功率MESFET器件还可以通过在碳化硅衬底的第一面和第二面上的漏极区域的有源层中并入碳化硅源区域并且在第一面上设置肖特基势垒栅电极来形成 。
    • 8. 发明申请
    • SILICON CARBIDE FIELD EFFECT DEVICE
    • 碳化硅场效应器件
    • WO1995009439A1
    • 1995-04-06
    • PCT/US1994009826
    • 1994-08-31
    • NORTH CAROLINA STATE UNIVERSITYBALIGA, Bantval, Jayant
    • NORTH CAROLINA STATE UNIVERSITY
    • H01L29/772
    • H01L29/1608H01L29/0865H01L29/41775H01L29/7828
    • A silicon carbide field effect device includes vertically stacked silicon carbide regions of first conductivity type, extending from a lowermost drain region to an uppermost source region. In between the drain and source regions, a drift region and a channel region are provided. The drift region extends adjacent the drain region and the channel region extends between the drift region and the source region. Control of majority carrier conduction between the source and drain regions is provided by a plurality of trenches, which extend through the source and channel region, and conductive gate electrodes therein. To provide high blocking voltage capability and low on-state resistance, the doping concentration in the drift region is selected to be greater than the doping concentration of the channel region but below the doping concentration of the drain and source regions. Preferably, the material used for the gate electrodes, the spacing between adjacent trenches and the doping concentration of the channel region are chosen so that the channel region is depleted of majority charge carriers when zero potential bias is applied to the gate electrodes.
    • 碳化硅场效应器件包括从最下面的漏极区域延伸到最上面的源极区域的垂直堆叠的第一导电类型的碳化硅区域。 在漏极和源极区域之间,提供漂移区域和沟道区域。 漂移区域相邻于漏极区域延伸,并且沟道区域在漂移区域和源极区域之间延伸。 源极和漏极区域之间的多数载流子传导的控制由延伸穿过源极和沟道区域的多个沟槽以及其中的导电栅极电极提供。 为了提供高阻挡电压能力和低导通电阻,漂移区中的掺杂浓度选择为大于沟道区的掺杂浓度,但低于漏极和源极区的掺杂浓度。 优选地,选择用于栅极电极的材料,相邻沟槽之间的间隔和沟道区域的掺杂浓度,使得当将零电位偏压施加到栅电极时,沟道区域耗尽多数电荷载流子。
    • 9. 发明申请
    • SILICON CARBIDE POWER DEVICES COMPRISING CHARGE COUPLING REGIONS
    • 包含充电耦合区域的碳化硅电力装置
    • WO0070684A3
    • 2001-06-14
    • PCT/US0013455
    • 2000-05-16
    • UNIV NORTH CAROLINA STATEBALIGA BANTVAL JAYANT
    • BALIGA BANTVAL JAYANT
    • H01L29/06H01L29/24H01L29/40H01L29/78H01L29/808H01L29/872
    • H01L29/408H01L29/0619H01L29/0634H01L29/0649H01L29/1608H01L29/7813H01L29/8083H01L29/872
    • Silicon carbide power devices (10, 10', 30) having trench-based charge coupling regions include a silicon carbide substrate having a silicon carbide drift region (12) of first conductivity type (e.g., N-type) and a trench (T1, T2) therein at a first face (11a) thereof. A uniformly doped silicon carbide charge coupling region (14a, 14b) of second conductivity type is also provided in the trench. This charge coupling region forms a P-N rectifying junction with the drift region that extends along a sidewall of the trench. The drift region and charge coupling region are both uniformly doped at equivalent and relatively high net majority carrier doping concentrations. Siilicon carbide switching devices that use the present charge coupling regions include Schottky barrier rectifiers (SBRs) (10, 10'), junction field effect transistors (JFETs) (30) and metal-oxide-semiconductor field effect transistors (MOSFETs) (30). Alternatively, the charge coupling regions may be replaced by semi-insulting regions.
    • 具有基于沟槽的电荷耦合区域的碳化硅功率器件(10,10',30)包括具有第一导电类型(例如,N型)的碳化硅漂移区(12)和沟槽(T1, T2)的第一面(11a)。 在沟槽中还提供了第二导电类型的均匀掺杂的碳化硅电荷耦合区域(14a,14b)。 该电荷耦合区域与沿着沟槽的侧壁延伸的漂移区域形成P-N整流结。 漂移区域和电荷耦合区域都以相等和相对较高的净多数载流子掺杂浓度均匀掺杂。 使用本电荷耦合区的硅碳化物开关器件包括肖特基势垒整流器(SBR)(10,10'),结场效应晶体管(JFET)(30)和金属氧化物半导体场效应晶体管(MOSFET)30。 。 或者,电荷耦合区域可以由半绝缘区域代替。
    • 10. 发明申请
    • SCHOTTKY BARRIER RECTIFIERS AND METHODS OF FORMING SAME
    • 肖特基障碍整流器及其形成方法
    • WO1997043789A1
    • 1997-11-20
    • PCT/US1997007866
    • 1997-05-09
    • NORTH CAROLINA STATE UNIVERSITYBALIGA, Bantval, Jayant
    • NORTH CAROLINA STATE UNIVERSITY
    • H01L29/872
    • H01L29/8725H01L29/872
    • A Schottky rectifier (10) includes MOS-filled trenches and an anode electrode at a face of a semiconductor substrate and an optimally nonuniformly doped drift (12d) region therein which in combination provide high blocking voltage capability with low reverse-biased leakage current and low forward voltage drop. The nonuniformly doped drift (12d) region contains a concentration of first conductivity type dopants therein which increases monotonically in a direction away from a Schottky rectifying function formed between the anode electrode (18) and the drift region (12d). A profile of the doping concentration in the drift region is preferably a linear or step graded profile with a concentration of less than about 5x10 cm (e.g., 1x10 cm ) at the Schottky rectifying junction and a concentration of about ten times greater (e.g., 3x10 cm ) at a junction between the drift region (12d) and a cathode region (12c). The thickness of the insulating regions (16) (e.g., SiO2) in the MOS-filled trenches is also greater than about 1000 ANGSTROM to simultaneously inhibit field crowding and increase the breakdown voltage of the device. The nonuniformly doped drift region (12d) is preferably formed by epitaxial growth from the cathode region (12c) and doped in-situ.
    • 肖特基整流器(10)包括MOS填充的沟槽和在半导体衬底的表面处的阳极电极和在其中的最佳不均匀掺杂的漂移(12d)区域,其组合提供高阻断电压能力和低反向偏置漏电流和低 正向压降。 不均匀掺杂的漂移(12d)区域包含其中在远离形成在阳极电极(18)和漂移区域(12d)之间的肖特基整流功能的方向上单调增加的第一导电类型掺杂剂的浓度。 漂移区域中掺杂浓度的曲线优选是肖特基(Schottky)的浓度小于约5×10 16 cm -3(例如,1×10 16 cm -3)的线性或阶梯分布曲线 整流结和在漂移区(12d)和阴极区(12c)之间的接合处的浓度约为十倍(例如3×10 17 cm -3)。 MOS填充沟槽中的绝缘区域(16)(例如SiO 2)的厚度也大于约1000,以同时抑制场占据并增加器件的击穿电压。 非均匀掺杂漂移区(12d)优选通过从阴极区(12c)外延生长并原位掺杂而形成。