会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • High repetition rate laser produced plasma EUV light source
    • US20050205810A1
    • 2005-09-22
    • US10803526
    • 2004-03-17
    • Robert AkinsRichard SandstromWilliam PartloIgor FomenkovThomas SteigerJohn AlgotsNorbert BoweringRobert JacquesFrederick PalenschatJun Song
    • Robert AkinsRichard SandstromWilliam PartloIgor FomenkovThomas SteigerJohn AlgotsNorbert BoweringRobert JacquesFrederick PalenschatJun Song
    • G01J1/00G03F7/20H01J65/04H05G2/00
    • B82Y10/00G03F7/70033H05G2/003H05G2/008
    • An EUV light source apparatus and method are disclosed, which may comprise a pulsed laser providing laser pulses at a selected pulse repetition rate focused at a desired target ignition site; a target formation system providing discrete targets at a selected interval coordinated with the laser pulse repetition rate; a target steering system intermediate the target formation system and the desired target ignition site; and a target tracking system providing information about the movement of target between the target formation system and the target steering system, enabling the target steering system to direct the target to the desired target ignition site. The target tracking system may provide information enabling the creation of a laser firing control signal, and may comprise a droplet detector comprising a collimated light source directed to intersect a point on a projected delivery path of the target, having a respective oppositely disposed light detector detecting the passage of the target through the respective point, or a detector comprising a linear array of a plurality of photo-sensitive elements aligned to a coordinate axis, the light from the light source intersecting a projected delivery path of the target, at least one of the which may comprise a plane-intercept detection device. The droplet detectors may comprise a plurality of droplet detectors each operating at a different light frequency, or a camera having a field of view and a two dimensional array of pixels imaging the field of view. The apparatus and method may comprise an electrostatic plasma containment apparatus providing an electric plasma confinement field at or near a target ignition site at the time of ignition, with the target tracking system providing a signal enabling control of the electrostatic plasma containment apparatus. The apparatus and method may comprise a vessel having and intermediate wall with a low pressure trap allowing passage of EUV light and maintaining a differential pressure across the low pressure trap. The apparatus and method may comprise a magnetic plasma confinement mechanism creating a magnetic field in the vicinity of the target ignition site to confine the plasma to the target ignition site, which may be pulsed and may be controlled using outputs from the target tracking system.
    • 2. 发明申请
    • High repetition rate laser produced plasma EUV light source
    • US20070029511A1
    • 2007-02-08
    • US11471258
    • 2006-06-20
    • Robert AkinsRichard SandstromWilliam PartloIgor Fomenkov
    • Robert AkinsRichard SandstromWilliam PartloIgor Fomenkov
    • G01J3/10
    • B82Y10/00G03F7/70033H05G2/003H05G2/008
    • An EUV light source apparatus and method are disclosed, which may comprise a pulsed laser providing laser pulses at a selected pulse repetition rate focused at a desired target ignition site; a target formation system providing discrete targets at a selected interval coordinated with the laser pulse repetition rate; a target steering system intermediate the target formation system and the desired target ignition site; and a target tracking system providing information about the movement of target between the target formation system and the target steering system, enabling the target steering system to direct the target to the desired target ignition site. The target tracking system may provide information enabling the creation of a laser firing control signal, and may comprise a droplet detector comprising a collimated light source directed to intersect a point on a projected delivery path of the target, having a respective oppositely disposed light detector detecting the passage of the target through the respective point, or a detector comprising a linear array of a plurality of photo-sensitive elements aligned to a coordinate axis, the light from the light source intersecting a projected delivery path of the target, at least one of the which may comprise a plane-intercept detection device. The droplet detectors may comprise a plurality of droplet detectors each operating at a different light frequency, or a camera having a field of view and a two dimensional array of pixels imaging the field of view. The apparatus and method may comprise an electrostatic plasma containment apparatus providing an electric plasma confinement field at or near a target ignition site at the time of ignition, with the target tracking system providing a signal enabling control of the electrostatic plasma containment apparatus. The apparatus and method may comprise a vessel having and intermediate wall with a low pressure trap allowing passage of EUV light and maintaining a differential pressure across the low pressure trap. The apparatus and method may comprise a magnetic plasma confinement mechanism creating a magnetic field in the vicinity of the target ignition site to confine the plasma to the target ignition site, which may be pulsed and may be controlled using outputs from the target tracking system.
    • 4. 发明申请
    • EUV collector debris management
    • EUV收集器碎片管理
    • US20060091109A1
    • 2006-05-04
    • US10979945
    • 2004-11-01
    • William PartloRichard SandstromIgor FomenkovAlexander ErshovWilliam OldhamWilliam MarxOscar Hemberg
    • William PartloRichard SandstromIgor FomenkovAlexander ErshovWilliam OldhamWilliam MarxOscar Hemberg
    • H01L21/306B08B6/00B44C1/22
    • B08B7/00
    • A method and apparatus that may comprise an EUV light producing mechanism utilizing an EUV plasma source material comprising a material that will form an etching compound, which plasma source material produces EUV light in a band around a selected center wavelength comprising: an EUV plasma generation chamber; an EUV light collector contained within the chamber having a reflective surface containing at least one layer comprising a material that does not form an etching compound and/or forms a compound layer that does not significantly reduce the reflectivity of the reflective surface in the band; an etchant source gas contained within the chamber comprising an etchant source material with which the plasma source material forms an etching compound, which etching compound has a vapor pressure that will allow etching of the etching compound from the reflective surface. The etchant source material may comprises a halogen or halogen compound. The etchant source material may be selected based upon the etching being stimulated in the presence of photons of EUV light and/or DUV light and/or any excited energetic photons with sufficient energy to stimulate the etching of the plasma source material. The apparatus may further comprise an etching stimulation plasma generator providing an etching stimulation plasma in the working vicinity of the reflective surface; and the etchant source material may be selected based upon the etching being stimulated by an etching stimulation plasma. There may also be an ion accelerator accelerating ions toward the reflective surface. The ions may comprise etchant source material. The apparatus and method may comprise a part of an EUV production subsystem with an optical element to be etched of plasma source material.
    • 可以包括使用EUV等离子体源材料的EUV发光机构的方法和装置,所述EUV等离子体源材料包括将形成蚀刻化合物的材料,所述等离子体源材料在所选择的中心波长周围的带内产生EUV光,包括:EUV等离子体产生室 ; 包含在室内的EUV光收集器具有反射表面,该反射表面包含至少一层,该层包含不形成蚀刻化合物的材料和/或形成不显着降低该带中的反射表面的反射率的化合物层; 包含在腔室内的蚀刻剂源气体包括蚀刻剂源材料,等离子体源材料与蚀刻剂源材料形成蚀刻化合物,该蚀刻化合物具有允许从反射表面蚀刻蚀刻化合物的蒸气压。 蚀刻剂源材料可以包含卤素或卤素化合物。 蚀刻剂源材料可以基于在存在EUV光和/或DUV光的光子和/或具有足够能量以激发等离子体源材料的蚀刻的任何激发能量光子的情况下被激发的蚀刻来选择。 该装置还可以包括在反射表面的工作附近提供蚀刻刺激等离子体的蚀刻刺激等离子体发生器; 并且蚀刻剂源材料可以基于通过蚀刻刺激等离子体刺激的蚀刻来选择。 还可以存在离子加速剂将离子朝向反射表面加速。 离子可以包括蚀刻剂源材料。 该装置和方法可以包括具有待蚀刻的等离子体源材料的光学元件的EUV生产子系统的一部分。
    • 5. 发明申请
    • Laser output beam wavefront splitter for bandwidth spectrum control
    • US20050286598A1
    • 2005-12-29
    • US10875662
    • 2004-06-23
    • Richard SandstromDaniel BrownAlexander ErshovIgor FomenkovWilliam Partlo
    • Richard SandstromDaniel BrownAlexander ErshovIgor FomenkovWilliam Partlo
    • G03F7/20H01S3/08H01S3/097H01S3/10H01S3/1055H01S3/13H01S3/22
    • H01S3/0812G03F7/70025G03F7/70575H01S3/08059H01S3/097H01S3/1055H01S3/1305
    • An apparatus and method for providing bandwidth control in a narrow band short pulse duration gas discharge laser output light pulse beam producing system, producing a beam comprising laser output light pulses at a selected pulse repetition rate, is disclosed which may comprise a dispersive bandwidth selection optic selecting at least one center wavelength for each pulse determined at least in part by the angle of incidence of the laser light pulse beam containing the respective pulse on the dispersive wavelength selection optic; a tuning mechanism operative to select at least one angle of incidence of the a laser light pulse beam containing the respective pulse upon the dispersive center wavelength selection optic; the tuning mechanism comprising a plurality of incidence angle selection elements each defining an angle of incidence for a different spatially separated but not temporally separated portion of the laser light pulse to return from the dispersive center wavelength selection optic a laser light pulse comprising a plurality of spatially separated but not temporally separated portions, each portion having one of at least two different selected center wavelengths. The tuning mechanism may comprise a temporal angle of incidence selection element defining an angle of incidence for different temporally separated portions of the pulse to return from the dispersive bandwidth selection optic a laser beam comprising a plurality of temporally separated portions of each pulse, each temporally separated portion of each pulse having one of at least two different selected center wavelengths. The tuning mechanism may comprise a plurality of spatial incidence angle selection elements each defining an angle of incidence for a spatially separated but not temporally separated portion of the laser light pulse, and a plurality of temporal angle of incidence selection elements each defining at least a first angle of incidence for at least a first temporally separated portion of each spatially separated but not temporally separated portion of the pulse and a second angle of incidence for a second temporally separated but not spatially separated portion of each spatially separated portion of the pulse.
    • 8. 发明申请
    • Gas discharge laser output light beam parameter control
    • 气体放电激光输出光束参数控制
    • US20060227839A1
    • 2006-10-12
    • US11095293
    • 2005-03-31
    • Herve BesauceleIgor FomenkovWilliam PartloFedor TrintchoukHao Ton That
    • Herve BesauceleIgor FomenkovWilliam PartloFedor TrintchoukHao Ton That
    • H01S3/22
    • H01S3/036H01S3/038H01S3/097H01S3/09702H01S3/134
    • A line narrowed gas discharge laser system and method of operation are disclosed which may comprise: an oscillator cavity; a laser chamber comprising a chamber housing containing a lasing medium gas; at least one peaking capacitor electrically connected to the chamber housing and to a first one of a pair of electrodes; a second one of the pair of electrodes connected to an opposite terminal of the at least one peaking capacitor; a current return path connected to the chamber housing; the one terminal, the first one of the electrodes, the lasing medium gas, the second one of the electrodes, the current return path and the second terminal forming a head current inductive loop having an inductance unique to the particular head current inductive loo; a spectral quality tuning mechanism comprising a mechanism for changing the particular head current inductive loop inductance value for the particular head current inductance loop.
    • 公开了一种窄气体放电激光系统和操作方法,其可以包括:振荡器腔; 激光室,包括容纳激光介质气体的腔室; 至少一个峰值电容器电连接到所述腔室壳体和一对电极中的第一电极; 所述一对电极中的第二个连接到所述至少一个峰值电容器的相对端子; 连接到所述腔室壳体的电流返回路径; 一个端子,第一个电极,激光介质气体,第二个电极,电流返回路径和第二个端子,形成具有特定头电流电感槽独有的电感的头电流感应回路; 光谱质量调谐机构包括用于改变特定头电流电感回路的特定头电流感应环电感值的机构。
    • 10. 发明申请
    • Discharge produced plasma EUV light source
    • US20070023711A1
    • 2007-02-01
    • US11493945
    • 2006-07-26
    • Igor FomenkovWilliam PartloGerry BlumenstockNortbert BoweringI. OliverXiaojiang PanRodney Simmons
    • Igor FomenkovWilliam PartloGerry BlumenstockNortbert BoweringI. OliverXiaojiang PanRodney Simmons
    • G01J3/10
    • H05G2/003B82Y10/00G03F7/70033G03F7/70166G03F7/70175G03F7/70825G03F7/70891G03F7/70908G03F7/70916G21K1/06G21K2201/064G21K2201/067H01S3/005H01S3/225H05G2/005H05H1/06
    • An DPP EUV source is disclosed which may comprise a debris mitigation apparatus employing a metal halogen gas producing a metal halide from debris exiting the plasma. The EUV source may have a debris shield that may comprise a plurality of curvilinear shield members having inner and outer surfaces connected by light passages aligned to a focal point, which shield members may be alternated with open spaces between them and may have surfaces that form a circle in one axis of rotation and an ellipse in another. The electrodes may be supplied with a discharge pulse shaped to produce a modest current during the axial run out phase of the discharge and a peak occurring during the radial compression phase of the discharge. The light source may comprise a turbomolecular pump having an inlet connected to the generation chamber and operable to preferentially pump more of the source gas than the buffer gas from the chamber. The source may comprise a tuned electrically conductive electrode comprising: a differentially doped ceramic material doped in a first region to at least select electrical conductivity and in a second region at least to select thermal conductivity. The first region may be at or near the outer surface of the electrode structure and the ceramic material may be SiC or alumina and the dopant is BN or a metal oxide, including SiO or TiO2. The source may comprise a moveable electrode assembly mount operative to move the electrode assembly mount from a replacement position to an operating position, with the moveable mount on a bellows. The source may have a temperature control mechanism operatively connected to the collector and operative to regulate the temperature of the respective shell members to maintain a temperature related geometry optimizing the glancing angle of incidence reflections from the respective shell members, or a mechanical positioner to position the shell members. The shells may be biased with a voltage. The debris shield may be fabricated using off focus laser radiation. The anode may be cooled with a hollow interior defining two coolant passages or porous metal defining the passages. The debris shield may be formed of pluralities of large, intermediate and small fins attached either to a mounting ring or hub or to each other with interlocking tabs that provide uniform separation and strengthening and do not block any significant amount of light.