会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 128. 发明申请
    • SEMICONDUCTOR STRUCTURES AND DEVICES FOR DETECTING FAR-INFRARED LIGHT
    • 用于检测红外光的半导体结构和器件
    • WO02080287A2
    • 2002-10-10
    • PCT/US0148088
    • 2001-12-10
    • MOTOROLA INC
    • DROOPAD RAVINDRANATH
    • H01L21/20H01L21/36H01L29/76H01L29/94H01L31/062H01L31/09H01L31/101H01L31/113H01L31/119H01L31/18H01L33/00
    • H01L31/1852H01L21/0237H01L21/02381H01L21/02439H01L21/02488H01L21/02507H01L21/0251H01L21/02521H01L31/1836H01L33/0066Y02E10/544Y02P70/521
    • High-quality epitaxial layers of narrow-bandgap monocrystalline semiconductor materials can be grown overlying monocrystalline substrates (22), such as large silicon wafers, by forming a compliant substrate for growing the monocrystalline layers. One way to achieve the formation of a compliant substrate includes first growing a monocrystalline oxide layer (24) on a silicon wafer. The oxide layer may be spaced apart from the silicon wafer by an amorphous interface layer (28) of silicon oxide. The amorphous interface layer (28) dissipates strain and permits the growth of a high-quality monocrystalline oxide layer. The oxide layer (24) is lattice-matched to both the underlying silicon wafer and the overlying monocrystalline semiconductor material layer (26). Any lattice mismatch between the oxide layer (24) and the underlying silicon substrate (22) is relieved by the amorphous interface layer (28). Optical structures, such as far-infrared detectors and emitters, can be grown on high-quality, epitaxial, narrow-bandgap compound semiconductor materials to create highly reliable devices at reduced costs.
    • 通过形成用于生长单晶层的柔性衬底,可以将窄带隙单晶半导体材料的高质量外延层生长成覆盖在单晶衬底(22)上,例如大的硅晶片。 实现顺应性衬底的形成的一种方式包括首先在硅晶片上生长单晶氧化物层(24)。 氧化物层可以通过氧化硅的非晶界面层(28)与硅晶片间隔开。 非晶界面层(28)耗散应变并允许高质量单晶氧化物层的生长。 氧化物层(24)与下面的硅晶片和上覆单晶半导体材料层(26)晶格匹配。 氧化物层(24)和下面的硅衬底(22)之间的任何晶格失配被非晶界面层(28)释放。 光学结构,例如远红外线检测器和发射器,可以在高品质,外延,窄带隙化合物半导体材料上生长,以降低成本创建高可靠性的器件。
    • 130. 发明申请
    • MOSFET WITH FIELD REDUCING TRENCHES IN BODY REGION
    • MOSFET在场地减少现场
    • WO0068997A9
    • 2002-07-18
    • PCT/US0012191
    • 2000-05-05
    • C P CLARE CORP
    • NEILSON JOHN M SZAFRANI MAXIMEPOLCE NESTOREJONES SCOTT
    • H01L29/06H01L29/10H01L29/78H01L29/00H01L29/76H01L29/94H01L31/062H01L31/113H01L31/119
    • H01L29/408H01L29/0634H01L29/0649H01L29/1095H01L29/7802
    • A MOSFET device (100) that exhibits low power loss characteristics by minimizing source-to-drain channel on resistance includes a semiconductor block having at least two surfaces and a drift region (110) disposed within the semiconductor block; the drift region is characterized by a first conduction type and a first predetermined dopant concentration. A body region (104) with a second conduction type is disposed within the semiconductor block between and adjacent to the first surface and the drift region. A source region (142) is disposed within the semiconductor block, and is embedded in the body region so as to be adjacent to the body region and the first surface. The MOSFET device further includes at least one drain region disposed in the semiconductor block between the second surface and the drift region. An opening is formed in the body region, extending from the first surface and into the semiconductor block. The opening has one or more interior walls (106) that are doped with a dopant of the same conduction type as the body region, and at a second predetermined dopant concentration, so as to form a depletable region near the walls. A blocking voltage applied across the MOSFET device depletes charge carriers within the semiconductor block, so as to substantially prevent electrical current from flowing through the MOSFET between the source region and the drain region. The opening, or trench (102), in the device forces the depletion region to spread laterally within the drift region as blocking voltage increases.
    • 通过使源极至漏极沟道电阻最小化而显示低功率损耗特性的MOSFET器件(100)包括具有至少两个表面的半导体块和设置在该半导体块内的漂移区(110); 漂移区的特征在于第一导电类型和第一预定掺杂剂浓度。 具有第二导电类型的主体区域(104)设置在半导体块内,并且与第一表面和漂移区域相邻。 源极区域(142)设置在半导体块内,并且被嵌入在主体区域中以与身体区域和第一表面相邻。 MOSFET器件还包括设置在第二表面和漂移区域之间的半导体块中的至少一个漏极区域。 在本体区域中形成有从第一表面延伸到半导体块中的开口。 开口具有一个或多个内壁(106),其被掺杂有与体区相同导电类型的掺杂剂,并且以第二预定掺杂剂浓度掺杂,以在壁附近形成可消耗区域。 施加在MOSFET器件两端的阻断电压耗尽半导体块内的电荷载流子,从而基本上防止电流流过源极区和漏极区之间的MOSFET。 当阻塞电压增加时,器件中的开口或沟槽(102)迫使耗尽区域在漂移区域内横向扩展。