会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Multilayered barrier metal thin-films
    • 多层阻隔金属薄膜
    • US08264081B2
    • 2012-09-11
    • US11311546
    • 2005-12-19
    • Wei PanYoshi OnoDavid R. EvansSheng Teng Hsu
    • Wei PanYoshi OnoDavid R. EvansSheng Teng Hsu
    • H01L23/48H01L23/52
    • H01L21/28562H01L21/76841H01L2221/1078
    • A multi-layered barrier metal thin film is deposited on a substrate by atomic layer chemical vapor deposition (ALCVD). The multi-layer film may comprise several different layers of a single chemical species, or several layers each of distinct or alternating chemical species. In a preferred embodiment, the multi-layer barrier thin film comprises a Tantalum Nitride layer on a substrate, with a Titanium Nitride layer deposited thereon. The thickness of the entire multi-layer film may be approximately fifty Angstroms. The film has superior film characteristics, such as anti-diffusion capability, low resistivity, high density, and step coverage, when compared to films deposited by conventional chemical vapor deposition (CVD). The multi-layered barrier metal thin film of the present invention has improved adhesion characteristics and is particularly suited for metallization of a Copper film thereon.
    • 通过原子层化学气相沉积(ALCVD)将多层阻挡金属薄膜沉积在衬底上。 多层膜可以包括单个化学物质的几个不同层,或者各个不同的或交替的化学物质的几个层。 在优选实施例中,多层阻挡薄膜包括在衬底上的氮化钽层,其上沉积有氮化钛层。 整个多层膜的厚度可以是大约50埃。 当与通过常规化学气相沉积(CVD)沉积的膜相比时,该膜具有优异的膜特性,例如抗扩散能力,低电阻率,高密度和台阶覆盖。 本发明的多层阻挡金属薄膜具有改善的粘合特性,特别适用于其上的铜膜的金属化。
    • 5. 发明授权
    • Stress-loaded film and method for same
    • 应力负荷膜及其方法
    • US06184157B2
    • 2001-02-06
    • US09088456
    • 1998-06-01
    • Sheng Teng HsuHongning YangDavid R. EvansTue NguyenYanjun Ma
    • Sheng Teng HsuHongning YangDavid R. EvansTue NguyenYanjun Ma
    • B05D306
    • C23C14/50C23C14/06C23C14/22C23C16/30C23C16/44C23C16/4582
    • A method has been provided to counteract the inherent tension in a deposited film. A wafer substrate is fixed to a wafer chuck having a curved surface. When the chuck surface is convex, a tensile stress is implanted in a deposited film. Upon release from the chuck, the deposited film develops a compressive stress. When the chuck surface is concave, a compressive stress is implanted in the deposited film. Upon release from the chuck, the deposited film develops a tensile stress. Loading a film with a compressive stress is helpful in making films having an inherently tensile stress become thermal stable. Stress loading is also used to improve adhesion between films, and to prevent warping of a film during annealing. A product-by-process using the above-described method is also provided.
    • 已经提供了一种抵消沉积膜中的固有张力的方法。 将晶片基板固定到具有弯曲表面的晶片卡盘。 当卡盘表面凸出时,在沉积膜中注入拉伸应力。 当从卡盘释放时,沉积的膜产生压缩应力。 当卡盘表面凹陷时,在沉积膜中注入压应力。 当从卡盘释放时,沉积的膜产生拉伸应力。 加载具有压应力的薄膜有助于使具有固有拉伸应力的薄膜变得热稳定。 应力负荷也用于提高膜之间的粘附性,并且防止退火期间膜的翘曲。 还提供了使用上述方法的逐个方法。
    • 7. 发明授权
    • Back-to-back metal/semiconductor/metal (MSM) Schottky diode
    • 背对背金属/半导体/金属(MSM)肖特基二极管
    • US07968419B2
    • 2011-06-28
    • US12234663
    • 2008-09-21
    • Tingkai LiSheng Teng HsuDavid R. Evans
    • Tingkai LiSheng Teng HsuDavid R. Evans
    • H01L21/20
    • H01L27/101G11C13/0007G11C2213/31H01L27/2409H01L29/66143H01L29/872H01L45/04H01L45/1233H01L45/147
    • A method is provided for forming a metal/semiconductor/metal (MSM) back-to-back Schottky diode from a silicon (Si) semiconductor. The method deposits a Si semiconductor layer between a bottom electrode and a top electrode, and forms a MSM diode having a threshold voltage, breakdown voltage, and on/off current ratio. The method is able to modify the threshold voltage, breakdown voltage, and on/off current ratio of the MSM diode in response to controlling the Si semiconductor layer thickness. Generally, both the threshold and breakdown voltage are increased in response to increasing the Si thickness. With respect to the on/off current ratio, there is an optimal thickness. The method is able to form an amorphous Si (a-Si) and polycrystalline Si (polySi) semiconductor layer using either chemical vapor deposition (CVD) or DC sputtering. The Si semiconductor can be doped with a Group V donor material, which decreases the threshold voltage and increases the breakdown voltage.
    • 提供了用于从硅(Si)半导体形成金属/半导体/金属(MSM)背对背肖特基二极管的方法。 该方法在底电极和顶电极之间沉积Si半导体层,并形成具有阈值电压,击穿电压和开/关电流比的MSM二极管。 响应于控制Si半导体层厚度,该方法能够修改MSM二极管的阈值电压,击穿电压和导通/截止电流比。 通常,响应于Si厚度的增加,阈值和击穿电压都增加。 关于开/关电流比,存在最佳厚度。 该方法能够使用化学气相沉积(CVD)或DC溅射形成非晶Si(a-Si)和多晶硅(polySi)半导体层。 Si半导体可以掺杂有V族施主材料,其降低阈值电压并增加击穿电压。
    • 10. 发明授权
    • Method of making self-aligned shallow trench isolation
    • 自对准浅沟槽隔离方法
    • US06627510B1
    • 2003-09-30
    • US10112014
    • 2002-03-29
    • David R. EvansSheng Teng HsuBruce D. UlrichDouglas J. TweetLisa H. Stecker
    • David R. EvansSheng Teng HsuBruce D. UlrichDouglas J. TweetLisa H. Stecker
    • H01L21762
    • H01L21/28194H01L21/76224H01L21/823481H01L29/517H01L29/518Y10S438/975
    • A modified STI process is provided comprising forming a first polysilicon layer over a substrate. Forming a trench through the first polysilicon layer and into the substrate, and filling the trench with an oxide layer. Depositing a second polysilicon layer over the oxide, such that the bottom of the second polysilicon layer within the trench is above the bottom of the first polysilicon layer, and the top of the second polysilicon layer within the trench is below the top of the first polysilicon layer. The resulting structure may then be planarized using a CMP process. An alignment key may be formed by selectively etching the oxide layer. A third polysilicon layer may then be deposited and patterned using photoresist to form a gate structure. During patterning, exposed second polysilicon layer is etched. An etch stop is detected at the completion of removal of the second polysilicon layer. A thin layer of the first polysilicon layer remains, to be carefully removed using a subsequent selective etch process.
    • 提供了一种改进的STI工艺,包括在衬底上形成第一多晶硅层。 通过第一多晶硅层形成沟槽并进入衬底,并用氧化物层填充沟槽。 在氧化物上沉积第二多晶硅层,使得沟槽内的第二多晶硅层的底部高于第一多晶硅层的底部,并且沟槽内的第二多晶硅层的顶部低于第一多晶硅的顶部 层。 然后可以使用CMP工艺将得到的结构平坦化。 可以通过选择性地蚀刻氧化物层来形成对准键。 然后可以使用光致抗蚀剂沉积和图案化第三多晶硅层以形成栅极结构。 在图案化期间,蚀刻暴露的第二多晶硅层。 在完成去除第二多晶硅层时检测到蚀刻停止。 保留第一多晶硅层的薄层,使用随后的选择性蚀刻工艺小心地去除。