会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method of manufacturing semiconductor devices
    • 制造半导体器件的方法
    • US06828184B2
    • 2004-12-07
    • US10618292
    • 2003-07-11
    • Ihl Hyun Cho
    • Ihl Hyun Cho
    • H01L218238
    • H01L21/31133H01L21/02052H01L21/823462
    • Disclosed is a method of manufacturing semiconductor devices. In the process of simultaneously forming a high voltage device and a low voltage device, a photoresist film for patterning a gate oxide film in a high voltage device is removed in a wet mode using a solvent. The polysilicon film used as the gate electrode is then formed without applying a vacuum. It is thus possible to increase reliability of the gate oxide film, and prevent damage of the gate oxide film due to ozone plasma and penetration of a grain protrusion of the polysilicon film into the gate oxide film. Accordingly, the breakdown voltage characteristic of the gate oxide film is improved.
    • 公开了半导体器件的制造方法。 在同时形成高电压器件和低电压器件的过程中,使用溶剂以湿模式除去用于在高电压器件中构图栅极氧化膜的光致抗蚀剂膜。 然后在不施加真空的情况下形成用作栅电极的多晶硅膜。 因此,可以提高栅极氧化膜的可靠性,并且防止由于臭氧等离子体导致的栅极氧化膜的损坏和多晶硅膜的晶粒突起的渗透进入栅极氧化膜。 因此,提高了栅极氧化膜的击穿电压特性。
    • 2. 发明授权
    • Non-volatile semiconductor memory device and manufacturing method thereof
    • 非易失性半导体存储器件及其制造方法
    • US06818505B2
    • 2004-11-16
    • US10135443
    • 2002-05-01
    • Naoki Tsuji
    • Naoki Tsuji
    • H01L218238
    • H01L27/11521H01L21/28273H01L27/115H01L29/42324H01L29/66825
    • In a non-volatile semiconductor memory device, three-layered structure of the first, second and third floating gate electrodes is implemented, and stepped portions are provided on the first interlayer insulating film surrounding the first floating gate electrode. The position of the bottom surface of the second floating gate electrode can be disposed higher than that of the upper surface of the first floating gate electrode. Consequently, compared with overlapping area of the floating gate electrode with a control gate electrode in a conventional non-volatile semiconductor device, it can be increased by the length of stepped portions on the first interlayer insulating film. Film thickness as floating gate electrode will not be as thick as conventional structures. Overlapping area of the floating gate electrode with the control gate electrode can be sufficiently secured without a portion with the maximum film thickness of floating gate electrode being larger.
    • 在非易失性半导体存储器件中,实现了第一,第二和第三浮栅电极的三层结构,并且在围绕第一浮栅电极的第一层间绝缘膜上设置有台阶部分。 第二浮栅电极的底表面的位置可以比第一浮栅电极的上表面高。 因此,与传统的非易失性半导体器件中的具有控制栅电极的浮栅电极的重叠面积相比,可以通过第一层间绝缘膜上的阶梯部分的长度来增加。 作为浮栅电极的膜厚度将不如常规结构那样厚。 可以充分确保浮栅电极与控制栅电极的重叠区域,而没有浮动栅电极的最大膜厚度的部分较大。
    • 5. 发明授权
    • Semiconductor device and method for fabricating same
    • 半导体装置及其制造方法
    • US06812085B2
    • 2004-11-02
    • US10271745
    • 2002-10-17
    • Sang Gi Lee
    • Sang Gi Lee
    • H01L218238
    • H01L27/105H01L27/11H01L27/1116
    • A semiconductor device and a method for fabricating the same which improve characteristic of stand-by current of an SRAM cell is disclosed in the present invention. The semiconductor device comprises a semiconductor substrate in which a peripheral area and a cell area are defined, a first and second gate insulating layers on the semiconductor substrate of the peripheral area and the cell area, first and second gate electrodes on the first and second gate insulating layers, respectively, first and second heavily doped source/drain regions in the semiconductor substrate at both sides of the first gate electrode and the second gate electrode, respectively, first and second lightly doped source/drain regions in the semiconductor substrate, adjacent to the first heavily doped source/drain regions and the second heavily doped source/drain regions, respectively, wherein the first and second lightly doped source/drain regions have a different length, and a silicide layer on the first and second gate electrodes and in the first and second heavily doped source/drain regions.
    • 在本发明中公开了一种提高SRAM单元的待机电流特性的半导体器件及其制造方法。 半导体器件包括其中限定了外围区域和单元区域的半导体衬底,在周边区域的半导体衬底上的第一和第二栅极绝缘层和电池区域,第一和第二栅极上的第一和第二栅电极 绝缘层分别在半导体衬底中在第一栅电极和第二栅极两侧的第一和第二重掺杂源/漏区分别在半导体衬底中的第一和第二轻掺杂源/漏区,邻近 第一重掺杂源极/漏极区和第二重掺杂源极/漏极区,其中第一和第二轻掺杂源极/漏极区具有不同的长度,以及在第一和第二栅电极上的硅化物层 第一和第二重掺杂源/漏区。
    • 8. 发明授权
    • ESD parasitic bipolar transistors with high resistivity regions in the collector
    • 集电极中具有高电阻率区域的ESD寄生双极晶体管
    • US06787880B2
    • 2004-09-07
    • US10437093
    • 2003-05-13
    • David HuJun Cai
    • David HuJun Cai
    • H01L218238
    • H01L27/027
    • A method and a structure for a parasitic bipolar silicided ESD device that has high resistivity regions within the collector of the parasitic NPN. The device has the structure of a N-MOS transistor and a substrate contact. The device preferably has silicide regions over the doped regions. The invention has two types of high resistivity regions: 1) isolation regions (e.g., oxide shallow trench isolation (STI)) and 2) undoped or lightly doped regions (e.g., channel regions). The channel regions can have gates thereover and the gates can be charged. Also, optionally a n−well (n minus well) can be formed under the collector. The high resistivity regions increase the collector resistivity thereby improving the performance of the parasitic bipolar ESD device.
    • 一种在寄生NPN的集电极内具有高电阻率区域的寄生双极硅化ESD器件的方法和结构。 该器件具有N-MOS晶体管和衬底接触的结构。 器件优选在掺杂区域上方具有硅化物区域。 本发明具有两种类型的高电阻率区域:1)隔离区域(例如,氧化物浅沟槽隔离(STI))和2)未掺杂或轻掺杂区域(例如沟道区)。 通道区域可以有栅极,栅极可以充电。 此外,可以在收集器下方形成任选的n - 阱(n-negative well)。 高电阻率区域增加了集电极电阻率,从而提高了寄生双极型ESD器件的性能。
    • 9. 发明授权
    • Transistor formation for semiconductor devices
    • 半导体器件的晶体管形成
    • US06784062B2
    • 2004-08-31
    • US10162289
    • 2002-06-03
    • Chih-Chen ChoZhongze Wang
    • Chih-Chen ChoZhongze Wang
    • H01L218238
    • H01L27/11H01L21/82345H01L21/823842
    • A semiconductor fabrication method of forming a pair of transistor gates of opposite conductivity type by partially forming first and second gate stacks comprising an insulation layer, a conductive layer and polysilicon layer for the pair of transistor by removing a portion of the polysilicon layer. The polysilicon layer includes a dominant region of first-type conductive dopants and a dominant region of second-type conductive dopants. A first-type conductive transistor gate is formed by, completing the formation of the first gate stack and a second-type conductive transistor gate is formed by completing the formation of the second gate stack separately from the formation of the first-type transistor gate.
    • 通过部分地形成第一和第二栅极堆叠来形成具有相反导电类型的一对晶体管栅极的半导体制造方法,该第一和第二栅极堆叠通过去除多晶硅层的一部分而包括一对晶体管的绝缘层,导电层和多晶硅层。 多晶硅层包括第一导电掺杂剂的主要区域和第二导电掺杂剂的主要区域。 通过完成第一栅极堆叠的形成而形成第一导电晶体管栅极,并且通过与第一型晶体管栅极的形成分开完成第二栅极堆叠的形成而形成第二导电晶体管栅极。