会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method for improving metallic nanostructure stability
    • 提高金属纳米结构稳定性的方法
    • US08810897B2
    • 2014-08-19
    • US13434548
    • 2012-03-29
    • Akinori HashimuraLiang TangDavid R. Evans
    • Akinori HashimuraLiang TangDavid R. Evans
    • G02B26/00G02F1/167
    • G02F1/167B05D5/12G02F1/1334G02F1/13439G02F1/23G02F2202/36G02F2203/10G02F2203/34
    • A method is provided for improving metallic nanostructure stability. The method provides a substrate, and using a physical vapor deposition (PVD) process for example, deposits metallic nanostructures having a first diameter overlying the substrate. Some examples of metallic nanostructures include Ag, Au, and Al. The metallic nanostructures are annealed in an atmosphere including an inert gas and H2. The annealing temperature is less than the melting temperature the metal material in bulk form. In response to the annealing, stabilized metallic nanostructures are formed. If the stabilized metallic nanostructures are exposed to an ambient air environment the stabilized metallic nanostructure maintain the first diameter. Typically, the metallic nanostructures are initially formed having a rectangular shape with corners. After annealing, the stabilized metallic nanostructures have a dome shape.
    • 提供了一种提高金属纳米结构稳定性的方法。 该方法提供基底,并且例如使用物理气相沉积(PVD)工艺沉积具有覆盖在基底上的第一直径的金属纳米结构。 金属纳米结构的一些实例包括Ag,Au和Al。 金属纳米结构在包括惰性气体和H 2的气氛中退火。 退火温度小于块状形式的金属材料的熔融温度。 响应于退火,形成稳定的金属纳米结构。 如果稳定的金属纳米结构暴露于环境空气环境,则稳定的金属纳米结构保持第一直径。 通常,金属纳米结构最初形成为具有角部的矩形形状。 退火后,稳定的金属纳米结构具有圆顶形状。
    • 2. 发明申请
    • Method for Improving Metallic Nanostructure Stability
    • 改善金属纳米结构稳定性的方法
    • US20130077036A1
    • 2013-03-28
    • US13434548
    • 2012-03-29
    • Akinori HashimuraLiang TangDavid R. Evans
    • Akinori HashimuraLiang TangDavid R. Evans
    • B05D5/12G02F1/1343
    • G02F1/167B05D5/12G02F1/1334G02F1/13439G02F1/23G02F2202/36G02F2203/10G02F2203/34
    • A method is provided for improving metallic nanostructure stability. The method provides a substrate, and using a physical vapor deposition (PVD) process for example, deposits metallic nanostructures having a first diameter overlying the substrate. Some examples of metallic nanostructures include Ag, Au, and Al. The metallic nanostructures are annealed in an atmosphere including an inert gas and H2. The annealing temperature is less than the melting temperature the metal material in bulk form. In response to the annealing, stabilized metallic nanostructures are formed. If the stabilized metallic nanostructures are exposed to an ambient air environment the stabilized metallic nanostructure maintain the first diameter. Typically, the metallic nanostructures are initially formed having a rectangular shape with corners. After annealing, the stabilized metallic nanostructures have a dome shape.
    • 提供了一种提高金属纳米结构稳定性的方法。 该方法提供基底,并且例如使用物理气相沉积(PVD)工艺沉积具有覆盖在基底上的第一直径的金属纳米结构。 金属纳米结构的一些实例包括Ag,Au和Al。 金属纳米结构在包括惰性气体和H 2的气氛中退火。 退火温度小于块状形式的金属材料的熔融温度。 响应于退火,形成稳定的金属纳米结构。 如果稳定的金属纳米结构暴露于环境空气环境,则稳定的金属纳米结构保持第一直径。 通常,金属纳米结构最初形成为具有角部的矩形形状。 退火后,稳定的金属纳米结构具有圆顶形状。
    • 3. 发明授权
    • Multilayered barrier metal thin-films
    • 多层阻隔金属薄膜
    • US08264081B2
    • 2012-09-11
    • US11311546
    • 2005-12-19
    • Wei PanYoshi OnoDavid R. EvansSheng Teng Hsu
    • Wei PanYoshi OnoDavid R. EvansSheng Teng Hsu
    • H01L23/48H01L23/52
    • H01L21/28562H01L21/76841H01L2221/1078
    • A multi-layered barrier metal thin film is deposited on a substrate by atomic layer chemical vapor deposition (ALCVD). The multi-layer film may comprise several different layers of a single chemical species, or several layers each of distinct or alternating chemical species. In a preferred embodiment, the multi-layer barrier thin film comprises a Tantalum Nitride layer on a substrate, with a Titanium Nitride layer deposited thereon. The thickness of the entire multi-layer film may be approximately fifty Angstroms. The film has superior film characteristics, such as anti-diffusion capability, low resistivity, high density, and step coverage, when compared to films deposited by conventional chemical vapor deposition (CVD). The multi-layered barrier metal thin film of the present invention has improved adhesion characteristics and is particularly suited for metallization of a Copper film thereon.
    • 通过原子层化学气相沉积(ALCVD)将多层阻挡金属薄膜沉积在衬底上。 多层膜可以包括单个化学物质的几个不同层,或者各个不同的或交替的化学物质的几个层。 在优选实施例中,多层阻挡薄膜包括在衬底上的氮化钽层,其上沉积有氮化钛层。 整个多层膜的厚度可以是大约50埃。 当与通过常规化学气相沉积(CVD)沉积的膜相比时,该膜具有优异的膜特性,例如抗扩散能力,低电阻率,高密度和台阶覆盖。 本发明的多层阻挡金属薄膜具有改善的粘合特性,特别适用于其上的铜膜的金属化。
    • 4. 发明授权
    • Nanotip electrode electroluminescence device with contoured phosphor layer
    • 具有成像荧光粉层的纳米技术电极电致发光器件
    • US07589464B2
    • 2009-09-15
    • US11070051
    • 2005-03-01
    • John F. Conley, Jr.David R. EvansWei GaoYoshi Ono
    • John F. Conley, Jr.David R. EvansWei GaoYoshi Ono
    • H05B33/26
    • H05B33/10B82Y20/00C09K11/54C09K11/642H01L33/18H05B33/14
    • A device and a fabrication method are provided for an EL device with a nanotip-contoured phosphor layer. The method comprises: forming a bottom electrode with nanotips; forming a phosphor layer overlying the bottom electrode, having irregularly-shaped top and bottom surfaces; and, forming a top electrode overlying the phosphor layer. The bottom electrode top surface has a nanotip contour, and the phosphor layer irregularly-shaped top and bottom surfaces have contours approximately matching the bottom electrode top surface nanotip contour. In one aspect, a contoured bottom dielectric is interposed between the bottom electrode and the phosphor layer, having top and bottoms surfaces with contours approximately matching the nanotip contour. Likewise, a top dielectric may be interposed between the top electrode and the phosphor layer, having a bottom surface with a contour approximately matching the contour of phosphor layer top surface.
    • 提供了一种具有纳米尺度荧光体层的EL器件的器件和制造方法。 该方法包括:形成具有纳米尖端的底部电极; 形成覆盖在底部电极上的荧光体层,具有不规则形状的顶部和底部表面; 并且形成覆盖磷光体层的顶部电极。 底部电极顶表面具有纳米尖端轮廓,并且荧光体层不规则形状的顶表面和底表面具有与底部电极顶表面纳米尖端轮廓近似匹配的轮廓。 在一个方面,在底部电极和荧光体层之间插入有轮廓的底部电介质,其具有顶部和底部表面,轮廓几乎与纳米尖端轮廓相匹配。 类似地,顶部电介质可以插入在顶部电极和荧光体层之间,具有大致与荧光体层顶表面的轮廓相匹配的轮廓的底面。
    • 5. 发明申请
    • Back-To-Back Metal/Semiconductor/Metal (MSM) Schottky Diode
    • 背对背金属/半导体/金属(MSM)肖特基二极管
    • US20090032817A1
    • 2009-02-05
    • US12234663
    • 2008-09-21
    • Tingkai LiSheng Teng HsuDavid R. Evans
    • Tingkai LiSheng Teng HsuDavid R. Evans
    • H01L29/04H01L21/329
    • H01L27/101G11C13/0007G11C2213/31H01L27/2409H01L29/66143H01L29/872H01L45/04H01L45/1233H01L45/147
    • A method is provided for forming a metal/semiconductor/metal (MSM) back-to-back Schottky diode from a silicon (Si) semiconductor. The method deposits a Si semiconductor layer between a bottom electrode and a top electrode, and forms a MSM diode having a threshold voltage, breakdown voltage, and on/off current ratio. The method is able to modify the threshold voltage, breakdown voltage, and on/off current ratio of the MSM diode in response to controlling the Si semiconductor layer thickness. Generally, both the threshold and breakdown voltage are increased in response to increasing the Si thickness. With respect to the on/off current ratio, there is an optimal thickness. The method is able to form an amorphous Si (a-Si) and polycrystalline Si (polySi) semiconductor layer using either chemical vapor deposition (CVD) or DC sputtering. The Si semiconductor can be doped with a Group V donor material, which decreases the threshold voltage and increases the breakdown voltage.
    • 提供了用于从硅(Si)半导体形成金属/半导体/金属(MSM)背对背肖特基二极管的方法。 该方法在底电极和顶电极之间沉积Si半导体层,并形成具有阈值电压,击穿电压和开/关电流比的MSM二极管。 响应于控制Si半导体层厚度,该方法能够修改MSM二极管的阈值电压,击穿电压和导通/截止电流比。 通常,响应于Si厚度的增加,阈值和击穿电压都增加。 关于开/关电流比,存在最佳厚度。 该方法能够使用化学气相沉积(CVD)或DC溅射形成非晶Si(a-Si)和多晶硅(polySi)半导体层。 Si半导体可以掺杂有V族施主材料,其降低阈值电压并增加击穿电压。