会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Methods of forming capacitors, methods of forming capacitor-over-bit line memory circuitry, and related integrated circuitry constructions
    • 形成电容器的方法,形成电容器 - 位线存储器电路的方法以及相关的集成电路结构
    • US06312988B1
    • 2001-11-06
    • US09389532
    • 1999-09-02
    • Tyler A. LowreyLuan C. TranAlan R. ReinbergD. Mark Durcan
    • Tyler A. LowreyLuan C. TranAlan R. ReinbergD. Mark Durcan
    • H01L218242
    • H01L28/90H01L27/10814H01L27/10852H01L27/10894H01L28/84H01L28/91
    • Methods of forming capacitors, methods of forming capacitor-over-bit line memory circuitry, and related integrated circuitry constructions are described. In one embodiment, a capacitor storage node is formed having an uppermost surface and an overlying insulative material over the uppermost surface. Subsequently, a capacitor dielectric functioning region is formed discrete from the overlying insulative material operably proximate at least a portion of the capacitor storage node. A cell electrode layer is formed over the capacitor dielectric functioning region and the overlying insulative material. In another embodiment, a capacitor storage node is formed having an uppermost surface and a side surface joined therewith. A protective cap is formed over the uppe-most surface and a capacitor dielectric layer is formed over the side surface and protective cap. A cell electrode layer is formed over the side surface of the capacitor storage node. In yet another embodiment, a plurality of capacitor storage nodes are formed arranged in columns. A common cell electrode layer is formed over the plurality of capacitor storage nodes. Cell electrode layer material is removed from between the columns and isolates individual cell electrodes over individual respective capacitor storage nodes. After the removing of the cell electrode layer material, conductive material is formed over portions of remaining cell electrode material thereby placing some of the individual cell electrodes into electrical communication with one another.
    • 描述形成电容器的方法,形成电容器 - 位线存储器电路的方法以及相关的集成电路结构。 在一个实施例中,形成在最上表面上具有最上表面和上覆绝缘材料的电容器存储节点。 随后,电容器电介质功能区域从可覆盖的电容器存储节点的至少一部分可操作地从上覆的绝缘材料离散形成。 在电容器电介质功能区域和上覆绝缘材料上形成电池电极层。 在另一个实施例中,电容器存储节点形成为具有与其接合的最上表面和侧表面。 在最大表面上形成保护帽,并且在侧表面和保护盖上形成电容器电介质层。 在电容器存储节点的侧表面上形成电池电极层。 在另一个实施例中,形成多列电容器存储节点。 在多个电容器存储节点上形成公共电极电极层。 从柱之间移除电极电极层材料,并在各个电容器存储节点上隔离各个电池电极。 在除去电池电极层材料之后,在剩余的电池电极材料的部分上形成导电材料,从而使一些单个电池电极彼此电连通。
    • 5. 发明授权
    • Dynamic flash memory cells with ultra thin tunnel oxides
    • 具有超薄隧道氧化物的动态闪存单元
    • US06456535B2
    • 2002-09-24
    • US09882920
    • 2001-06-15
    • Leonard ForbesLuan C. TranAlan R. ReinbergJoseph E. GeusicKie Y. AhnPaul A. FarrarEugene H. CloudDavid J. McElroy
    • Leonard ForbesLuan C. TranAlan R. ReinbergJoseph E. GeusicKie Y. AhnPaul A. FarrarEugene H. CloudDavid J. McElroy
    • G11C1604
    • G11C16/0416
    • Structures and methods involving n-channel flash memories with an ultrathin tunnel oxide thickness, have been provided. Both the write and erase operations are performed by tunneling. According to the teachings of the present invention, the n-channel flash memory cell with thin tunnel oxides will operate on a dynamic basis. The stored data can be refreshed every few seconds as necessary. However, the write and erase operations will however now be orders of magnitude faster than traditional n-channel flash memory and the cell provides a large gain. The present invention further provides structures and methods for n-channel floating gate transistors which avoid n-channel threshold voltage shifts and achieve source side tunneling erase. The n-channel memory cell structure includes a floating gate separated from a channel region by an oxide layer of less than 50 Angstroms (Å). According to the teachings of the present invention, the floating gate is adapted to hold a charge of the order of 10−17 Coulombs at for at least 1.0 second at 85 degrees Celsius. The method includes applying a potential of less than 3.0 Volts across the floating gate oxide which is less than 50 Angstroms, in order to add or remove a charge from a floating gate. The method further includes reading the n-channel memory cell by applying a potential to a control gate of the n-channel memory cell of less than 1.0 Volt.
    • 已经提供了涉及具有超薄隧道氧化物厚度的n通道闪速存储器的结构和方法。 写和擦除操作都通过隧道执行。 根据本发明的教导,具有薄隧道氧化物的n沟道闪存单元将在动态的基础上操作。 存储的数据可以根据需要每隔几秒刷新一次。 然而,写入和擦除操作现在将比传统的n通道快闪存储器快几个数量级,并且电池提供了大的增益。 本发明还提供了可以避免n沟道阈值电压偏移并实现源极侧漏极擦除的n沟道浮栅晶体管的结构和方法。 n沟道存储单元结构包括通过小于50埃(A)的氧化物层与沟道区分离的浮栅。 根据本发明的教导,浮动门适于在85摄氏度下将10-17库仑的电荷持续至少1.0秒。 该方法包括在小于50埃的浮栅上施加小于3.0伏特的电位,以从浮栅中增加或去除电荷。 该方法还包括通过向n沟道存储单元的控制栅极施加小于1.0伏的电位来读取n沟道存储单元。
    • 6. 发明授权
    • Dynamic flash memory cells with ultrathin tunnel oxides
    • 具有超薄隧道氧化物的动态闪存单元
    • US06249460B1
    • 2001-06-19
    • US09513938
    • 2000-02-28
    • Leonard ForbesLuan C. TranAlan R. ReinbergJoseph E. GeusicKie Y. AhnPaul A. FarrarEugene H. CloudDavid J. McElroy
    • Leonard ForbesLuan C. TranAlan R. ReinbergJoseph E. GeusicKie Y. AhnPaul A. FarrarEugene H. CloudDavid J. McElroy
    • G11C1604
    • G11C16/0416
    • Structures and methods involving n-channel flash memories with an ultrathin tunnel oxide thickness, have been provided. Both the write and erase operations are performed by tunneling. According to the teachings of the present invention, the n-channel flash memory cell with thin tunnel oxides will operate on a dynamic basis. The stored data can be refreshed every few seconds as necessary. However, the write and erase operations will however now be orders of magnitude faster than traditional n-channel flash memory and the cell provides a large gain. The present invention further provides structures and methods for n-channel floating gate transistors which avoid n-channel threshold voltage shifts and achieve source side tunneling erase. The n-channel memory cell structure includes a floating gate separated from a channel region by an oxide layer of less than 50 Angstroms (Å). According to the teachings of the present invention, the floating gate is adapted to hold a charge of the order of 10−17 Coulombs at for at least 1.0 second at 85 degrees Celsius. The method includes applying a potential of less than 3.0 Volts across the floating gate oxide which is less than 50 Angstroms, in order to add or remove a charge from a floating gate. The method further includes reading the n-channel memory cell by applying a potential to a control gate of the n-channel memory cell of less than 1.0 Volt.
    • 已经提供了涉及具有超薄隧道氧化物厚度的n通道闪速存储器的结构和方法。 写和擦除操作都通过隧道执行。 根据本发明的教导,具有薄隧道氧化物的n沟道闪存单元将在动态的基础上操作。 存储的数据可以根据需要每隔几秒刷新一次。 然而,写入和擦除操作现在将比传统的n通道快闪存储器快几个数量级,并且电池提供了大的增益。 本发明还提供了可以避免n沟道阈值电压偏移并实现源极侧漏极擦除的n沟道浮栅晶体管的结构和方法。 n沟道存储单元结构包括通过小于50埃(A)的氧化物层与沟道区分离的浮栅。 根据本发明的教导,浮动门适于在85摄氏度下将10-17库仑的电荷持续至少1.0秒。 该方法包括在小于50埃的浮栅上施加小于3.0伏特的电位,以从浮栅中增加或去除电荷。 该方法还包括通过向n沟道存储单元的控制栅极施加小于1.0伏的电位来读取n沟道存储单元。