会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Apparatus and method of growing single crystal
    • 生长单晶的装置和方法
    • US5363796A
    • 1994-11-15
    • US837202
    • 1992-02-18
    • Sumio KobayashiShunji MiyaharaToshiyuki FujiwaraTakayuki KuboHideki FujiwaraShuichi Inami
    • Sumio KobayashiShunji MiyaharaToshiyuki FujiwaraTakayuki KuboHideki FujiwaraShuichi Inami
    • C30B15/00C30B15/14C30B15/10
    • C30B29/06C30B15/14Y10T117/1068
    • An apparatus for growing a single crystal having a crucible, two heaters arranged at the outside of the crucible and along the vertical direction, a heat shield placed at the outside of the heaters, a radiation shield for shielding the single crystal from the radiation heat, and an upper heat shield for preventing the upward heat, transfer of the heaters. In the apparatus, a melted layer and solid layer of raw material are formed in the upper and lower portions of the crucible, respectively. While melting the solid layer, the single crystal is pulled up. The lower portion of the heat shield is thinner than the upper portion. The ratio of the height to the diameter of the crucible is 0.85 or more. The melting amount of the solid layer is controlled in the pulling process according to the non-segregation condition in the variable-thickness melted layer method. The oxygen concentration of the pulled single crystal is controlled in the pulling process by adjusting the rotation speed and rotation direction of the crucible.
    • 一种用于生长具有坩埚的单晶的装置,设置在坩埚外部并沿着垂直方向的两个加热器,设置在加热器外部的隔热罩,用于将单晶屏蔽在放射线上的辐射屏蔽, 以及用于防止加热器的向上热传递的上部隔热罩。 在该装置中,在坩埚的上部和下部分别形成熔融层和原料固体层。 在熔化固体层时,单晶被拉起。 隔热罩的下部比上部薄。 坩埚的高度与直径之比为0.85以上。 根据可变厚度熔融层法中的非偏析条件,在拉伸过程中控制固体层的熔融量。 通过调节坩埚的旋转速度和旋转方向,在牵引过程中控制拉出的单晶的氧浓度。
    • 3. 发明授权
    • Method for determining COP generation factors for single-crystal silicon wafer
    • 用于确定单晶硅晶片的COP生成因子的方法
    • US08549937B2
    • 2013-10-08
    • US13660299
    • 2012-10-25
    • Shuichi Inami
    • Shuichi Inami
    • G01N21/88
    • G06F19/70C30B15/00C30B29/06
    • A whole determination area of a targeted wafer is concentrically divided in a radial direction, COP density is obtained in each divided determination segment, a maximum value of the COP density is set as COP densityRADIUSMAX, a minimum value of the COP density is set as COP densityRADIUSMIN, a value computed by “(COP densityRADIUSMAX-COP densityRADIUSMIN)/COP densityRADIUSMAX” is compared to a predetermined set value, and a non-crystal-induced COP and a crystal-induced COP are distinguished from each other based on a clear criterion, thereby determining the COP generation factor. Therefore, a rejected wafer in which a determination of the crystal-induced COP is made despite being the non-crystal-induced COP can be relieved, so that a wafer production yield can be enhanced.
    • 目标晶片的整个确定区域沿径向同心分割,在每个划分的确定段中获得COP密度,将COP浓度的最大值设置为COP densityRADIUSMAX,将COP密度的最小值设置为COP 密度RADIUSMIN,将通过“(COP densityRADIUSMAX-COP densityRADIUSMIN)/ COP densityRADIUSMAX”计算的值与预定设定值进行比较,并且基于清晰标准将非晶体诱导的COP和晶体诱导的COP彼此区分开 ,从而确定COP生成因子。 因此,可以减轻其中尽管是非晶体诱导的COP而进行晶体诱导的COP的测定的拒绝晶片,从而可以提高晶片的制造成品率。
    • 4. 发明授权
    • Method for producing silicon single crystal
    • 硅单晶的制造方法
    • US07641734B2
    • 2010-01-05
    • US12078645
    • 2008-04-02
    • Shuichi Inami
    • Shuichi Inami
    • C30B15/20
    • C30B15/00C30B15/22C30B29/06
    • A method of growing silicon single crystals with a [110] crystallographic axis orientation by the Czochralski method is provided according to which a silicon seed crystal doped with a high concentration of boron is used and an included angle of a conical part during shoulder section formation is maintained within a specified range. It is thereby possible to grow large-diameter and heavy-weight dislocation-free silicon single crystals with a diameter of 300 mm or more in a stable manner, without the fear of dropping the single crystal during pulling up. Therefore, the method can be properly utilized in producing silicon single crystals as semiconductor materials.
    • 提供了通过Czochralski方法生长具有[110]晶轴取向的硅单晶的方法,根据该方法,使用掺杂有高浓度硼的硅晶种,并且在肩部形成期间锥形部分的夹角为 保持在指定范围内。 因此,可以稳定地生长直径为300mm以上的大直径且重量级的无位错硅单晶,而不用担心在拉起时滴下单晶。 因此,该方法可以适当地用于制造作为半导体材料的硅单晶。
    • 5. 发明申请
    • Method for producing silicon single crystal
    • 硅单晶的制造方法
    • US20080245291A1
    • 2008-10-09
    • US12078645
    • 2008-04-02
    • Shuichi Inami
    • Shuichi Inami
    • C30B15/00
    • C30B15/00C30B15/22C30B29/06
    • A method of growing silicon single crystals with a [110] crystallographic axis orientation by the Czochralski method is provided according to which a silicon seed crystal doped with a high concentration of boron is used and an included angle of a conical part during shoulder section formation is maintained within a specified range. It is thereby possible to grow large-diameter and heavy-weight dislocation-free silicon single crystals with a diameter of 300 mm or more in a stable manner, without the fear of dropping the single crystal during pulling up. Therefore, the method can be properly utilized in producing silicon single crystals as semiconductor materials.
    • 提供了通过Czochralski方法生长具有[110]晶轴取向的硅单晶的方法,根据该方法,使用掺杂有高浓度硼的硅晶种,并且在肩部形成期间锥形部分的夹角为 保持在指定范围内。 因此,可以稳定地生长直径为300mm以上的大直径且重量级的无位错硅单晶,而不用担心在拉起时滴下单晶。 因此,该方法可以适当地用于制造作为半导体材料的硅单晶。
    • 6. 发明申请
    • Method for producing silicon single crystal
    • 硅单晶的制造方法
    • US20080053370A1
    • 2008-03-06
    • US11896564
    • 2007-09-04
    • Shuichi InamiKuniharu InoueManabu MoroishiTsuguya FukagawaNobuhiro Kusaba
    • Shuichi InamiKuniharu InoueManabu MoroishiTsuguya FukagawaNobuhiro Kusaba
    • C30B15/02
    • C30B29/06C30B15/22C30B15/36
    • An aspect of the invention provides a silicon single crystal production method in which a dislocation-free feature can easily be achieved to enhance crystal quality irrespective of a crystal orientation. In the silicon single crystal production method of the invention, by a Czochralski method, in dipping the seed crystal in the melt, a melt temperature is set to an optimum temperature at which the seed crystal is brought into contact with a melt surface, the melt temperature is lowered, the seed crystal is pulled up while a pulling rate of the seed crystal is increased, and the pulling rate is kept at a constant rate to form the neck portion at the time that a pulling diameter reaches a target neck diameter. The invention is suitable to the case in which a silicon single crystal having a crystal orientation is pulled up using the seed crystal having the crystal orientation .
    • 本发明的一个方面提供了一种硅单晶制造方法,其中无论晶体取向如何,都可以容易地实现无位错特征以提高晶体质量。 在本发明的硅单晶制造方法中,通过切克劳斯基法,将晶种浸入熔融物中,将熔融温度设定为晶种与熔融表面接触的最佳温度,熔融 降低晶种,同时提高晶种的拉伸速度,并且在拉伸直径达到目标颈部直径的时刻,拉伸速率保持恒定的速度形成颈部。 本发明适用于使用具有晶体取向<110>的晶种将具有晶体取向<110>的单晶硅上拉的情况。
    • 7. 发明申请
    • Method for determining cop generation factors for single-crystal silicon wafer
    • 用于确定单晶硅晶片的掩模生成因子的方法
    • US20100000318A1
    • 2010-01-07
    • US12308058
    • 2007-05-22
    • Shuichi Inami
    • Shuichi Inami
    • G01N9/00
    • G06F19/70C30B15/00C30B29/06
    • A whole determination area of a targeted wafer is concentrically divided in a radial direction, COP density is obtained in each divided determination segment, a maximum value of the COP density is set as COP densityRADIUSMIN, a minimum value of the COP density is set as COP densityRADIUSMIN, a value computed by “(COP densityRADIUSMAX−COP densityRADIUSMIN)/COP densityRADIUSMAX” is compared to a predetermined set value, and a non-crystal-induced COP and a crystal-induced COP are distinguished from each other based on a clear criterion, thereby determining the COP generation factor. Therefore, a rejected wafer in which a determination of the crystal-induced COP is made despite being the non-crystal-induced COP can be relieved, so that a wafer production yield can be enhanced.
    • 目标晶片的整个确定区域沿径向同心分割,在每个划分的确定段中获得COP密度,将COP密度的最大值设置为COP densityRADIUSMIN,将COP密度的最小值设置为COP 密度RADIUSMIN,将通过“(COP densityRADIUSMAX-COP densityRADIUSMIN)/ COP densityRADIUSMAX”计算的值与预定设定值进行比较,并且基于清晰标准将非晶体诱导的COP和晶体诱导的COP彼此区分开 ,从而确定COP生成因子。 因此,可以减轻其中尽管是非晶体诱导的COP而进行晶体诱导的COP的测定的拒绝晶片,从而可以提高晶片的制造成品率。