会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Method of tantalum nitride deposition by tantalum oxide densification
    • 通过氧化钽致密化的氮化钽CVD沉积方法
    • US06319766B1
    • 2001-11-20
    • US09510582
    • 2000-02-22
    • Mouloud BakliSteve G. GhanayemHuyen T. Tran
    • Mouloud BakliSteve G. GhanayemHuyen T. Tran
    • H01L218242
    • H01L27/1087C23C16/0281C23C16/405C23C16/56H01L21/31604H01L21/318H01L29/66181
    • The invention provides a method for forming a metal nitride film by depositing a metal oxide film on the substrate and exposing the metal oxide film to a nitrating gas to densify the metal oxide and form a metal nitride film. The metal oxide film is deposited by the decomposition of a chemical vapor deposition precursor. The nitrating step comprises exposing the metal oxide film to a thermally or plasma enhanced nitrating gas preferably comprising nitrogen, oxygen, and anunonia. The invention also provides a process for forming a liner/barrier scheme for a metallization stack by forming a metal nitride layer over the substrate by the densification of a metal oxide layer by a nitrating gas depositing a metal liner layer. Optionally, a metal liner layer may be deposited over substrate prior to the metal nitride layer to form a metal/metal nitride liner/barrier scheme. The invention firer provides a process to form a microelectronic device comprising forming a first electrode, forming a metal nitride layer over the first electrode by densifying a metal oxide layer by a nitrating gas to form a metal nitride layer, depositing a dielectric layer over the metal nitride layer, and forming a second electrode over the dielectric layer. Alternatively, the metal nitride film may comprise the first and second electrodes.
    • 本发明提供一种通过在基板上沉积金属氧化物膜并将金属氧化物膜暴露于硝化气体以致使金属氧化物致密并形成金属氮化物膜的方法来形成金属氮化物膜。 通过化学气相沉积前体的分解沉积金属氧化物膜。 硝化步骤包括将金属氧化物膜暴露于热或等离子体增强的硝化气体中,优选包括氮气,氧气和氧气。 本发明还提供了一种用于通过用沉积金属衬垫层的硝化气体致密化金属氧化物层而在衬底上形成金属氮化物层来形成用于金属化堆叠的衬里/势垒方案的方法。 可选地,金属衬垫层可以在金属氮化物层之前沉积在衬底上以形成金属/金属氮化物衬垫/屏障方案。 本发明的火焰提供了形成微电子器件的方法,包括形成第一电极,通过用硝化气体致密化金属氧化物层,在第一电极上形成金属氮化物层,形成金属氮化物层,在金属上沉积介电层 氮化物层,并且在电介质层上形成第二电极。 或者,金属氮化物膜可以包括第一和第二电极。
    • 9. 发明授权
    • Particle dispersing system and method for testing semiconductor
manufacturing equipment
    • 粒子分散系统及半导体制造设备的测试方法
    • US5777245A
    • 1998-07-07
    • US710216
    • 1996-09-13
    • Madhavi ChandrachoodSteve G. GhanayemNancy CantwellDaniel J. RaderAnthony S. Geller
    • Madhavi ChandrachoodSteve G. GhanayemNancy CantwellDaniel J. RaderAnthony S. Geller
    • G01N15/02G01N19/00
    • G01N15/02
    • The system and method prepare a gas stream comprising particles at a known concentration using a particle disperser for moving particles from a reservoir of particles into a stream of flowing carrier gas. The electrostatic charges on the particles entrained in the carrier gas are then neutralized or otherwise altered, and the resulting particle-laden gas stream is then diluted to provide an acceptable particle concentration. The diluted gas stream is then split into a calibration stream and the desired output stream. The particles in the calibration stream are detected to provide an indication of the actual size distribution and concentration of particles in the output stream that is supplied to a process chamber being analyzed. Particles flowing out of the process chamber within a vacuum pumping system are detected, and the output particle size distribution and concentration are compared with the particle size distribution and concentration of the calibration stream in order to determine the particle transport characteristics of a process chamber, or to determine the number of particles lodged in the process chamber as a function of manufacturing process parameters such as pressure, flowrate, temperature, process chamber geometry, particle size, particle charge, and gas composition.
    • 该系统和方法使用用于将颗粒从颗粒储存器移动到流动的载气流中的颗粒分散器来制备包含已知浓度的颗粒的气流。 然后,夹带在载气中的颗粒上的静电电荷被中和或以其它方式改变,然后稀释所得到的载有颗粒的气流以提供可接受的颗粒浓度。 然后将稀释的气流分成校准流和所需的输出流。 检测校准流中的颗粒,以提供供应到正在分析的处理室的输出流中颗粒的实际尺寸分布和浓度的指示。 检测在真空泵送系统内从处理室流出的颗粒,并将输出粒度分布和浓度与校准流的粒度分布和浓度进行比较,以确定处理室的颗粒传输特性,或 以确定作为制造工艺参数如压力,流速,温度,处理室几何形状,粒度,颗粒电荷和气体组成的函数的处理室中的颗粒数。