会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • FLEXIBLE AND ON WAFER HYBRID PLASMA-SEMICONDUCTOR TRANSISTORS
    • 柔性和等离子体混合等离子体半导体晶体管
    • US20120104554A1
    • 2012-05-03
    • US13186401
    • 2011-07-19
    • J. Gary EdenPaul A. TchertchianThomas J. HoulahanDane J. SieversBenben LiClark J. Wagner
    • J. Gary EdenPaul A. TchertchianThomas J. HoulahanDane J. SieversBenben LiClark J. Wagner
    • H01L29/73H01L21/331
    • H01L33/02H01J17/066H01J17/49H01L29/0821H01L29/7317
    • Preferred embodiment flexible and on wafer hybrid plasma semiconductor devices have at least one active solid state semiconductor region; and a plasma generated in proximity to the active solid state semiconductor region(s). Doped solid state semiconductor regions are in a thin flexible solid state substrate, and a flexible non conducting material defining a microcavity adjacent the semiconductor regions. The flexible non conducting material is bonded to the thin flexible solid state substrate, and at least one electrode is arranged with respect to said flexible substrate to generate a plasma in said microcavity, where the plasma will influence or perform a semiconducting function in cooperation with said solid state semiconductor regions. A preferred on-wafer device is formed on a single side of a silicon on insulator wafer and defines the collector (plasma cavity), emitter and base regions on a common side, which provides a simplified and easy to manufacture structure. A preferred embodiment array of flexible hybrid plasma transistors of the invention is an n+pn PBJT fabricated between two flexible sheets. One or both of the flexible sheets is transparent. The overall array structure is planar, and the planarized structure is sealed between the two flexible sheets. Visible or ultraviolet light is emitted during operation by plasma collectors in the array. In preferred embodiments, individual PBJTs in the array serve as sub-pixels of a full-color display.
    • 优选实施例柔性和晶片上混合等离子体半导体器件具有至少一个活性固态半导体区域; 以及在活性固态半导体区域附近产生的等离子体。 掺杂的固态半导体区域处于薄的柔性固态衬底和限定邻近半导体区域的微腔的柔性非导电材料。 柔性非导电材料结合到薄柔性固态衬底上,并且相对于所述柔性衬底布置至少一个电极,以在所述微腔中产生等离子体,其中所述等离子体将与所述柔性衬底配合影响或执行半导体功能 固态半导体区域。 优选的晶片上器件形成在绝缘体上硅晶片的单侧上,并且在公共侧上限定了集电体(等离子体腔),发射极和基极区域,这提供了简化且易于制造的结构。 本发明的柔性混合等离子体晶体管的优选实施例阵列是在两个柔性片之间制造的n + pn PBJT。 一个或两个柔性片是透明的。 整个阵列结构是平面的,并且平坦化结构被密封在两个柔性片之间。 在阵列中的等离子体收集器的操作期间发出可见光或紫外光。 在优选实施例中,阵列中的各个PBJT用作全色显示器的子像素。
    • 2. 发明授权
    • Flexible hybrid plasma-semiconductor transistors and arrays
    • 灵活的混合等离子半导体晶体管和阵列
    • US08816435B2
    • 2014-08-26
    • US13186401
    • 2011-07-19
    • J. Gary EdenPaul A. TchertchianThomas J. HoulahanDane J. SieversBenben LiClark J. Wagner
    • J. Gary EdenPaul A. TchertchianThomas J. HoulahanDane J. SieversBenben LiClark J. Wagner
    • H01L27/12
    • H01L33/02H01J17/066H01J17/49H01L29/0821H01L29/7317
    • Preferred embodiment flexible and on wafer hybrid plasma semiconductor devices have at least one active solid state semiconductor region; and a plasma generated in proximity to the active solid state semiconductor region(s). Doped solid state semiconductor regions are in a thin flexible solid state substrate, and a flexible non conducting material defining a microcavity adjacent the semiconductor regions. The flexible non conducting material is bonded to the thin flexible solid state substrate, and at least one electrode is arranged with respect to said flexible substrate to generate a plasma in said microcavity, where the plasma will influence or perform a semiconducting function in cooperation with said solid state semiconductor regions. A preferred on-wafer device is formed on a single side of a silicon on insulator wafer and defines the collector (plasma cavity), emitter and base regions on a common side, which provides a simplified and easy to manufacture structure. A preferred embodiment array of flexible hybrid plasma transistors of the invention is an n+pn PBJT fabricated between two flexible sheets. One or both of the flexible sheets is transparent. The overall array structure is planar, and the planarized structure is sealed between the two flexible sheets. Visible or ultraviolet light is emitted during operation by plasma collectors in the array. In preferred embodiments, individual PBJTs in the array serve as sub-pixels of a full-color display.
    • 优选实施例柔性和晶片上混合等离子体半导体器件具有至少一个活性固态半导体区域; 以及在活性固态半导体区域附近产生的等离子体。 掺杂的固态半导体区域处于薄的柔性固态衬底和限定邻近半导体区域的微腔的柔性非导电材料。 柔性非导电材料结合到薄柔性固态衬底上,并且相对于所述柔性衬底布置至少一个电极,以在所述微腔中产生等离子体,其中所述等离子体将与所述柔性衬底配合影响或执行半导体功能 固态半导体区域。 优选的晶片上器件形成在绝缘体上硅晶片的单侧上,并且在公共侧上限定了集电体(等离子体腔),发射极和基极区域,这提供了简化且易于制造的结构。 本发明的柔性混合等离子体晶体管的优选实施例阵列是在两个柔性片之间制造的n + pn PBJT。 一个或两个柔性片是透明的。 整个阵列结构是平面的,并且平坦化结构被密封在两个柔性片之间。 在阵列中的等离子体收集器的操作期间发出可见光或紫外光。 在优选实施例中,阵列中的各个PBJT用作全色显示器的子像素。
    • 3. 发明申请
    • HYBRID PLASMA-SEMICONDUCTOR OPTOELECTRONIC DEVICES AND TRANSISTORS
    • 混合等离子体半导体光电器件和晶体管
    • US20110037102A1
    • 2011-02-17
    • US12817551
    • 2010-06-17
    • Paul A. TchertchianClark J. WagnerJ. Gary Eden
    • Paul A. TchertchianClark J. WagnerJ. Gary Eden
    • H01L29/772H01L29/861
    • H01L29/73H01J17/40H01L29/0821H01L29/1004H01L29/49H01L29/7311H01L29/772H01L29/78
    • The invention provides combination semiconductor and plasma devices, including transistors and phototransistors. A preferred embodiment hybrid plasma semiconductor device has active solid state semiconductor regions; and a plasma generated in proximity to the active solid state semiconductor regions. Devices of the invention are referred to as hybrid plasma-semiconductor devices, in which a plasma, preferably a microplasma, cooperates with conventional solid state semiconductor device regions to influence or perform a semiconducting function, such as that provided by a transistor. The invention provides a family of hybrid plasma electronic/photonic devices having properties previously unavailable. In transistor devices of the invention, a low temperature, glow discharge is integral to the hybrid transistor. Example preferred devices include hybrid BJT and MOSFET devices.
    • 本发明提供了组合半导体和等离子体器件,包括晶体管和光电晶体管。 优选的实施方案是混合等离子体半导体器件具有活性固态半导体区域和在活性固态半导体区域附近产生的等离子体。 本发明的装置被称为混合等离子体半导体器件,其中等离子体,优选微质体与常规固态半导体器件区域配合,以影响或执行诸如由晶体管提供的半导体功能。 本发明提供了具有以前不可用的特性的混合等离子体电子/光子器件系列。 在本发明的晶体管器件中,低温辉光放电与混合晶体管是一体的。 示例性的优选器件包括混合BJT和MOSFET器件。
    • 4. 发明授权
    • Hybrid plasma-semiconductor electronic and optical devices
    • 混合等离子体半导体电子和光学器件
    • US08525276B2
    • 2013-09-03
    • US12817551
    • 2010-06-17
    • Paul A. TchertchianClark J. WagnerJ. Gary Eden
    • Paul A. TchertchianClark J. WagnerJ. Gary Eden
    • H01L27/14
    • H01L29/73H01J17/40H01L29/0821H01L29/1004H01L29/49H01L29/7311H01L29/772H01L29/78
    • The invention provides combination semiconductor and plasma devices, including transistors and phototransistors. A preferred embodiment hybrid plasma semiconductor device has active solid state semiconductor regions; and a plasma generated in proximity to the active solid state semiconductor regions. Devices of the invention are referred to as hybrid plasma-semiconductor devices, in which a plasma, preferably a microplasma, cooperates with conventional solid state semiconductor device regions to influence or perform a semiconducting function, such as that provided by a transistor. The invention provides a family of hybrid plasma electronic/photonic devices having properties previously unavailable. In transistor devices of the invention, a low temperature, glow discharge is integral to the hybrid transistor. Example preferred devices include hybrid BJT and MOSFET devices.
    • 本发明提供了组合半导体和等离子体器件,包括晶体管和光电晶体管。 优选的实施方案是混合等离子体半导体器件具有活性固态半导体区域和在活性固态半导体区域附近产生的等离子体。 本发明的装置被称为混合等离子体半导体器件,其中等离子体,优选微质体与常规固态半导体器件区域配合,以影响或执行诸如由晶体管提供的半导体功能。 本发明提供了具有以前不可用的特性的混合等离子体电子/光子器件系列。 在本发明的晶体管器件中,低温辉光放电是混合晶体管的一部分。 示例性的优选器件包括混合BJT和MOSFET器件。
    • 5. 发明申请
    • MICROCHANNEL LASER HAVING MICROPLASMA GAIN MEDIA
    • 具有微波增益介质的MICROCHANNEL激光
    • US20100296978A1
    • 2010-11-25
    • US12682977
    • 2008-10-27
    • Sung-Jin ParkJ. Gary EdenPaoyei ChenPaul A. TchertchianThomas M. Spinka
    • Sung-Jin ParkJ. Gary EdenPaoyei ChenPaul A. TchertchianThomas M. Spinka
    • H01S5/20H01S5/187B01J19/08
    • H01S3/05H01S3/03H01S3/063H01S3/09H01S3/0971
    • The invention provides microchannel lasers having a microplasma gain medium. Lasers of the invention can be formed in semiconductor materials, and can also be formed in polymer materials. In a microlaser of the invention, high density plasmas are produced in microchannels. The microplasma acts as a gain medium with the electrodes sustaining the plasma in the microchannel. Reflectors are used with the microchannel for obtaining optical feedback to obtain lasing in the microplasma gain medium in devices of the invention for a wide range of atomic and molecular species. Several atomic and molecular gain media will produce sufficiently high gain coefficients that reflectors (mirrors) are not necessary. Microlasers of the invention are based on microplasma generation in channels of various geometries. Preferred embodiment microlaser designs can be fabricated in semiconductor materials, such as Si wafers, by standard photolithographic techniques, or in polymers by replica molding.
    • 本发明提供了具有微质增益介质的微通道激光器。 本发明的激光器可以形成在半导体材料中,也可以形成在聚合物材料中。 在本发明的微型激光器中,在微通道中产生高密度等离子体。 微量体作为增益介质,其中电极在微通道中维持等离子体。 反射器与微通道一起使用以获得光学反馈,以在广泛的原子和分子物种的本发明装置中的微量级增益介质中获得激光。 几个原子和分子增益介质将产生足够高的增益系数,反射器(反射镜)不是必需的。 本发明的微型扫描器基于各种几何形状的通道中的微量生成。 优选实施例微激光器设计可以通过标准光刻技术在半导体材料(例如Si晶片)中或通过复制成型制成聚合物。
    • 6. 发明授权
    • Low voltage microcavity plasma device and addressable arrays
    • 低电压微腔等离子体器件和可寻址阵列
    • US07615926B2
    • 2009-11-10
    • US11811892
    • 2007-06-12
    • J. Gary EdenSung-Jin ParkPaul A. TchertchianSeung Hoon Sung
    • J. Gary EdenSung-Jin ParkPaul A. TchertchianSeung Hoon Sung
    • H01J17/49
    • H01J11/12
    • Microcavity plasma devices and arrays of microcavity plasma devices are provided that have a reduced excitation voltage. A trigger electrode disposed proximate to a microcavity reduce the excitation voltage required between first and second electrodes to ignite a plasma in the microcavity when gas(es) or vapor(s) (or combinations thereof) are contained within the microcavity. The invention also provides symmetrical microplasma devices and arrays of microcavity plasma devices for which current waveforms are the same for each half-cycle of the voltage driving waveform. Additionally, the invention also provides devices that have standoff portions and voids that can reduce cross talk. The devices are preferably also used with a trigger electrode.
    • 提供微腔等离子体器件和微腔等离子体器件的阵列,其具有降低的激发电压。 在微腔内包含气体或蒸汽(或其组合)时,靠近微腔设置的触发电极减小了第一和第二电极之间所需的激发电压,以点燃微腔中的等离子体。 本发明还提供对称的微等离子体装置和微腔等离子体装置的阵列,其电流波形对于电压驱动波形的每个半周期是相同的。 此外,本发明还提供了具有能够减少串扰的间隔部分和空隙的装置。 这些装置优选地也与触发电极一起使用。
    • 7. 发明授权
    • Microchannel laser having microplasma gain media
    • 具有微质增益介质的微通道激光器
    • US08442091B2
    • 2013-05-14
    • US12682977
    • 2008-10-27
    • Sung-Jin ParkJ. Gary EdenPaoyei ChenPaul A. TchertchianThomas M. Spinka
    • Sung-Jin ParkJ. Gary EdenPaoyei ChenPaul A. TchertchianThomas M. Spinka
    • H01S3/091
    • H01S3/05H01S3/03H01S3/063H01S3/09H01S3/0971
    • The invention provides microchannel lasers having a microplasma gain medium. Lasers of the invention can be formed in semiconductor materials, and can also be formed in polymer materials. In a microlaser of the invention, high density plasmas are produced in microchannels. The microplasma acts as a gain medium with the electrodes sustaining the plasma in the microchannel. Reflectors are used with the microchannel for obtaining optical feedback to obtain lasing in the microplasma gain medium in devices of the invention for a wide range of atomic and molecular species. Several atomic and molecular gain media will produce sufficiently high gain coefficients that reflectors (mirrors) are not necessary. Microlasers of the invention are based on microplasma generation in channels of various geometries. Preferred embodiment microlaser designs can be fabricated in semiconductor materials, such as Si wafers, by standard photolithographic techniques, or in polymers by replica molding.
    • 本发明提供了具有微质增益介质的微通道激光器。 本发明的激光器可以形成在半导体材料中,也可以形成在聚合物材料中。 在本发明的微型激光器中,在微通道中产生高密度等离子体。 微量体作为增益介质,其中电极在微通道中维持等离子体。 反射器与微通道一起使用以获得光学反馈,以在广泛的原子和分子物种的本发明装置中的微量级增益介质中获得激光。 几个原子和分子增益介质将产生足够高的增益系数,反射器(反射镜)不是必需的。 本发明的微型扫描器基于各种几何形状的通道中的微量生成。 优选实施例微激光器设计可以通过标准光刻技术在半导体材料(例如Si晶片)中或通过复制成型制成聚合物。
    • 10. 发明授权
    • Roll to roll method of making microdischarge devices and arrays
    • 制作微放电器件和阵列的卷对卷方法
    • US07638937B2
    • 2009-12-29
    • US11070100
    • 2005-03-01
    • J. Gary EdenSung-Jin ParkClark J. Wagner
    • J. Gary EdenSung-Jin ParkClark J. Wagner
    • H01J63/04H01J61/09H01J13/46
    • H01J17/49H01J1/025H01J9/00H01J9/02H01J25/50H01J61/09H01J61/305H01J61/62H01J63/04H01J65/046
    • Roll to roll fabrication methods of the invention enable low cost mass production of microdischarge devices and arrays. A preferred embodiment method of fabricating a discharge device includes providing a dielectric layer sheet, a first electrode, and a second electrode sheet. A cavity is provided through at least a portion of the dielectric layer sheet. At least the dielectric layer sheet and second electrode sheet are rolled together. Another preferred embodiment method of fabrication a discharge device includes method of fabricating a discharge device includes providing a dielectric layer sheet and a cavity through at least a portion of the dielectric layer sheet. A first electrode is disposed as a film of conducting material on the dielectric layer sheet around a rim of the cavity. A second electrode sheet is provided. The dielectric layer sheet is rolled together with first electrode and second electrode sheets.
    • 本发明的卷对卷制造方法能够实现微量放电装置和阵列的低成本批量生产。 制造放电装置的优选实施例的方法包括提供介电层片,第一电极和第二电极片。 通过介电层片材的至少一部分提供空腔。 至少将电介质层片和第二电极片卷成一体。 制造放电器件的另一个优选实施例的方法包括制造放电器件的方法包括通过至少一部分电介质层片提供介电层片和空腔。 第一电极作为导电材料的膜设置在该空腔的边缘周围的介电层片上。 提供第二电极片。 介电层片与第一电极和第二电极片一起卷绕。