会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • MICROCHANNEL LASER HAVING MICROPLASMA GAIN MEDIA
    • 具有微波增益介质的MICROCHANNEL激光
    • US20100296978A1
    • 2010-11-25
    • US12682977
    • 2008-10-27
    • Sung-Jin ParkJ. Gary EdenPaoyei ChenPaul A. TchertchianThomas M. Spinka
    • Sung-Jin ParkJ. Gary EdenPaoyei ChenPaul A. TchertchianThomas M. Spinka
    • H01S5/20H01S5/187B01J19/08
    • H01S3/05H01S3/03H01S3/063H01S3/09H01S3/0971
    • The invention provides microchannel lasers having a microplasma gain medium. Lasers of the invention can be formed in semiconductor materials, and can also be formed in polymer materials. In a microlaser of the invention, high density plasmas are produced in microchannels. The microplasma acts as a gain medium with the electrodes sustaining the plasma in the microchannel. Reflectors are used with the microchannel for obtaining optical feedback to obtain lasing in the microplasma gain medium in devices of the invention for a wide range of atomic and molecular species. Several atomic and molecular gain media will produce sufficiently high gain coefficients that reflectors (mirrors) are not necessary. Microlasers of the invention are based on microplasma generation in channels of various geometries. Preferred embodiment microlaser designs can be fabricated in semiconductor materials, such as Si wafers, by standard photolithographic techniques, or in polymers by replica molding.
    • 本发明提供了具有微质增益介质的微通道激光器。 本发明的激光器可以形成在半导体材料中,也可以形成在聚合物材料中。 在本发明的微型激光器中,在微通道中产生高密度等离子体。 微量体作为增益介质,其中电极在微通道中维持等离子体。 反射器与微通道一起使用以获得光学反馈,以在广泛的原子和分子物种的本发明装置中的微量级增益介质中获得激光。 几个原子和分子增益介质将产生足够高的增益系数,反射器(反射镜)不是必需的。 本发明的微型扫描器基于各种几何形状的通道中的微量生成。 优选实施例微激光器设计可以通过标准光刻技术在半导体材料(例如Si晶片)中或通过复制成型制成聚合物。
    • 4. 发明授权
    • High-power lasers
    • 大功率激光器
    • US4486887A
    • 1984-12-04
    • US410594
    • 1982-08-23
    • Ethan D. HoagGlenn W. Zieders
    • Ethan D. HoagGlenn W. Zieders
    • H01S3/03H01S3/05H01S3/07H01S3/08H01S3/081H01S3/22
    • H01S3/05H01S3/073H01S3/081Y10S372/70
    • A high-power flowing-gas laser comprises a laser channel folded to include at least two legs angularly disposed to each other in a common plane and having a single folding mirror between them such that the laser rays through one leg, on the upstream side thereof with respect to the gas flowing transversely across that leg, are reflected by the folding mirror so as to be transposed to the downstream side of the other leg with respect to the gas flowing transversely across the other leg. A number of embodiments are described wherein the laser channel is folded to include four or other even number of legs according to a polygonal configuration, there being a separate flowing gas channel for each leg, all the gas channels directing the gas flow radially inwardly to a common collection region. Among the advantages provided by the described constructions are compensation for phase distortion and amplitude variations, and maximum laser channel length and laser output for a given system size and volume.
    • 大功率流动气体激光器包括被折叠成包括在公共平面中彼此成角度地设置的至少两个腿的激光通道,并且在它们之间具有单个折叠镜,使得激光射线在其上游侧的一条腿 相对于横向穿过该腿的气体,被折叠镜反射,以相对于横向横过另一条腿流动的气体转置到另一条腿的下游侧。 描述了多个实施例,其中根据多边形构造将激光通道折叠成包括四个或另外偶数个腿,每个腿具有单独的流动气体通道,所有气体通道将气体流径向向内引导到 共同收集区域。 所描述的结构提供的优点之一是对于给定的系统尺寸和体积的相位失真和幅度变化以及最大激光通道长度和激光输出的补偿。
    • 9. 发明授权
    • Microchannel laser having microplasma gain media
    • 具有微质增益介质的微通道激光器
    • US08442091B2
    • 2013-05-14
    • US12682977
    • 2008-10-27
    • Sung-Jin ParkJ. Gary EdenPaoyei ChenPaul A. TchertchianThomas M. Spinka
    • Sung-Jin ParkJ. Gary EdenPaoyei ChenPaul A. TchertchianThomas M. Spinka
    • H01S3/091
    • H01S3/05H01S3/03H01S3/063H01S3/09H01S3/0971
    • The invention provides microchannel lasers having a microplasma gain medium. Lasers of the invention can be formed in semiconductor materials, and can also be formed in polymer materials. In a microlaser of the invention, high density plasmas are produced in microchannels. The microplasma acts as a gain medium with the electrodes sustaining the plasma in the microchannel. Reflectors are used with the microchannel for obtaining optical feedback to obtain lasing in the microplasma gain medium in devices of the invention for a wide range of atomic and molecular species. Several atomic and molecular gain media will produce sufficiently high gain coefficients that reflectors (mirrors) are not necessary. Microlasers of the invention are based on microplasma generation in channels of various geometries. Preferred embodiment microlaser designs can be fabricated in semiconductor materials, such as Si wafers, by standard photolithographic techniques, or in polymers by replica molding.
    • 本发明提供了具有微质增益介质的微通道激光器。 本发明的激光器可以形成在半导体材料中,也可以形成在聚合物材料中。 在本发明的微型激光器中,在微通道中产生高密度等离子体。 微量体作为增益介质,其中电极在微通道中维持等离子体。 反射器与微通道一起使用以获得光学反馈,以在广泛的原子和分子物种的本发明装置中的微量级增益介质中获得激光。 几个原子和分子增益介质将产生足够高的增益系数,反射器(反射镜)不是必需的。 本发明的微型扫描器基于各种几何形状的通道中的微量生成。 优选实施例微激光器设计可以通过标准光刻技术在半导体材料(例如Si晶片)中或通过复制成型制成聚合物。
    • 10. 发明申请
    • Microfluidic Lasers
    • 微流控激光器
    • US20100303119A1
    • 2010-12-02
    • US11794919
    • 2006-02-08
    • Brian T. MayersRichard S. ConroyDmitri V. VezenovPreston SneeYinthai ChanMoungi G. BawendiGeorge M. Whitesides
    • Brian T. MayersRichard S. ConroyDmitri V. VezenovPreston SneeYinthai ChanMoungi G. BawendiGeorge M. Whitesides
    • H01S3/213H01S3/05H01S3/20
    • H01S3/05H01S3/213
    • The present invention generally relates to lasers comprising fluidic channels, such as microfluidic channels. In some instances, the channel contains two or more fluids. The fluids may remain non-mixed within the channel, for example, due to immiscibility and/or laminar flow within the channel. The fluids may be arranged in the channel such that light propagating in a first fluid is prevented by the second fluid from exiting the first fluid, for example, due to differences in the indexes of refraction (e.g., causing internal reflection of the fluid to occur). Thus, in one embodiment, a first fluid may be at least partially surrounded by a second fluid having a second index of refraction lower than the index of refraction of the first fluid. In some embodiments, the fluidic channel is used as a laser, for instance, a dye laser, i.e., a laser created by directing light at a dye to produce coherent light. The dye may be present in one or more fluids within the fluidic channel. The incident light (for example, created by another laser) may be directed at the channel from any angle. In some cases, laser light may be produced in a direction substantially aligned with the longitudinal axis of the channel. In some embodiments, the laser is free of mirrors, prisms, or gratings, or the laser may produce coherent light using a non-resonant photonic pathway. However, in other cases, mirrors, prisms, or gratings may be used to reflect light along the channel to enhance stimulated emission of coherent light. Another aspect of the invention includes optical diffractors, such as prisms or gratings, which can contain a fluid. The optical diffractors, in certain embodiments, are positioned to diffract light, such as coherent light, emanating from the fluidic channel. Still other aspects of the invention provide devices, kits, and methods of making and using such lasers.
    • 本发明一般涉及包括流体通道的激光器,例如微流体通道。 在一些情况下,通道包含两种或更多种流体。 流体可以在通道内保持不混合,例如,由于通道内的不混溶和/或层流。 流体可以布置在通道中,使得通过第二流体从第一流体中排出的光例如由于折射率的差异(例如,引起流体的内部反射)而被阻止在第一流体中传播的光 )。 因此,在一个实施例中,第一流体可以至少部分地被具有低于第一流体的折射率的第二折射率的第二流体包围。 在一些实施例中,流体通道用作激光器,例如染料激光器,即通过在染料处引导光以产生相干光而产生的激光。 染料可存在于流体通道内的一种或多种流体中。 入射光(例如,由另一激光产生的)可以从任何角度指向通道。 在一些情况下,可以在与通道的纵向轴线基本对准的方向上产生激光。 在一些实施例中,激光器不含镜子,棱镜或光栅,或者激光可以使用非共振光子通道产生相干光。 然而,在其他情况下,可以使用反射镜,棱镜或光栅来沿着通道反射光以增强相干光的受激发射。 本发明的另一方面包括可以包含流体的光学衍射器,例如棱镜或光栅。 在某些实施例中,光衍射器被定位成衍射从流体通道发出的光,例如相干光。 本发明的其它方面提供了制造和使用这种激光器的装置,套件和方法。