会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • FLEXIBLE AND ON WAFER HYBRID PLASMA-SEMICONDUCTOR TRANSISTORS
    • 柔性和等离子体混合等离子体半导体晶体管
    • US20120104554A1
    • 2012-05-03
    • US13186401
    • 2011-07-19
    • J. Gary EdenPaul A. TchertchianThomas J. HoulahanDane J. SieversBenben LiClark J. Wagner
    • J. Gary EdenPaul A. TchertchianThomas J. HoulahanDane J. SieversBenben LiClark J. Wagner
    • H01L29/73H01L21/331
    • H01L33/02H01J17/066H01J17/49H01L29/0821H01L29/7317
    • Preferred embodiment flexible and on wafer hybrid plasma semiconductor devices have at least one active solid state semiconductor region; and a plasma generated in proximity to the active solid state semiconductor region(s). Doped solid state semiconductor regions are in a thin flexible solid state substrate, and a flexible non conducting material defining a microcavity adjacent the semiconductor regions. The flexible non conducting material is bonded to the thin flexible solid state substrate, and at least one electrode is arranged with respect to said flexible substrate to generate a plasma in said microcavity, where the plasma will influence or perform a semiconducting function in cooperation with said solid state semiconductor regions. A preferred on-wafer device is formed on a single side of a silicon on insulator wafer and defines the collector (plasma cavity), emitter and base regions on a common side, which provides a simplified and easy to manufacture structure. A preferred embodiment array of flexible hybrid plasma transistors of the invention is an n+pn PBJT fabricated between two flexible sheets. One or both of the flexible sheets is transparent. The overall array structure is planar, and the planarized structure is sealed between the two flexible sheets. Visible or ultraviolet light is emitted during operation by plasma collectors in the array. In preferred embodiments, individual PBJTs in the array serve as sub-pixels of a full-color display.
    • 优选实施例柔性和晶片上混合等离子体半导体器件具有至少一个活性固态半导体区域; 以及在活性固态半导体区域附近产生的等离子体。 掺杂的固态半导体区域处于薄的柔性固态衬底和限定邻近半导体区域的微腔的柔性非导电材料。 柔性非导电材料结合到薄柔性固态衬底上,并且相对于所述柔性衬底布置至少一个电极,以在所述微腔中产生等离子体,其中所述等离子体将与所述柔性衬底配合影响或执行半导体功能 固态半导体区域。 优选的晶片上器件形成在绝缘体上硅晶片的单侧上,并且在公共侧上限定了集电体(等离子体腔),发射极和基极区域,这提供了简化且易于制造的结构。 本发明的柔性混合等离子体晶体管的优选实施例阵列是在两个柔性片之间制造的n + pn PBJT。 一个或两个柔性片是透明的。 整个阵列结构是平面的,并且平坦化结构被密封在两个柔性片之间。 在阵列中的等离子体收集器的操作期间发出可见光或紫外光。 在优选实施例中,阵列中的各个PBJT用作全色显示器的子像素。
    • 4. 发明申请
    • HYBRID PLASMA-SEMICONDUCTOR OPTOELECTRONIC DEVICES AND TRANSISTORS
    • 混合等离子体半导体光电器件和晶体管
    • US20110037102A1
    • 2011-02-17
    • US12817551
    • 2010-06-17
    • Paul A. TchertchianClark J. WagnerJ. Gary Eden
    • Paul A. TchertchianClark J. WagnerJ. Gary Eden
    • H01L29/772H01L29/861
    • H01L29/73H01J17/40H01L29/0821H01L29/1004H01L29/49H01L29/7311H01L29/772H01L29/78
    • The invention provides combination semiconductor and plasma devices, including transistors and phototransistors. A preferred embodiment hybrid plasma semiconductor device has active solid state semiconductor regions; and a plasma generated in proximity to the active solid state semiconductor regions. Devices of the invention are referred to as hybrid plasma-semiconductor devices, in which a plasma, preferably a microplasma, cooperates with conventional solid state semiconductor device regions to influence or perform a semiconducting function, such as that provided by a transistor. The invention provides a family of hybrid plasma electronic/photonic devices having properties previously unavailable. In transistor devices of the invention, a low temperature, glow discharge is integral to the hybrid transistor. Example preferred devices include hybrid BJT and MOSFET devices.
    • 本发明提供了组合半导体和等离子体器件,包括晶体管和光电晶体管。 优选的实施方案是混合等离子体半导体器件具有活性固态半导体区域和在活性固态半导体区域附近产生的等离子体。 本发明的装置被称为混合等离子体半导体器件,其中等离子体,优选微质体与常规固态半导体器件区域配合,以影响或执行诸如由晶体管提供的半导体功能。 本发明提供了具有以前不可用的特性的混合等离子体电子/光子器件系列。 在本发明的晶体管器件中,低温辉光放电与混合晶体管是一体的。 示例性的优选器件包括混合BJT和MOSFET器件。
    • 6. 发明授权
    • Roll to roll method of making microdischarge devices and arrays
    • 制作微放电器件和阵列的卷对卷方法
    • US07638937B2
    • 2009-12-29
    • US11070100
    • 2005-03-01
    • J. Gary EdenSung-Jin ParkClark J. Wagner
    • J. Gary EdenSung-Jin ParkClark J. Wagner
    • H01J63/04H01J61/09H01J13/46
    • H01J17/49H01J1/025H01J9/00H01J9/02H01J25/50H01J61/09H01J61/305H01J61/62H01J63/04H01J65/046
    • Roll to roll fabrication methods of the invention enable low cost mass production of microdischarge devices and arrays. A preferred embodiment method of fabricating a discharge device includes providing a dielectric layer sheet, a first electrode, and a second electrode sheet. A cavity is provided through at least a portion of the dielectric layer sheet. At least the dielectric layer sheet and second electrode sheet are rolled together. Another preferred embodiment method of fabrication a discharge device includes method of fabricating a discharge device includes providing a dielectric layer sheet and a cavity through at least a portion of the dielectric layer sheet. A first electrode is disposed as a film of conducting material on the dielectric layer sheet around a rim of the cavity. A second electrode sheet is provided. The dielectric layer sheet is rolled together with first electrode and second electrode sheets.
    • 本发明的卷对卷制造方法能够实现微量放电装置和阵列的低成本批量生产。 制造放电装置的优选实施例的方法包括提供介电层片,第一电极和第二电极片。 通过介电层片材的至少一部分提供空腔。 至少将电介质层片和第二电极片卷成一体。 制造放电器件的另一个优选实施例的方法包括制造放电器件的方法包括通过至少一部分电介质层片提供介电层片和空腔。 第一电极作为导电材料的膜设置在该空腔的边缘周围的介电层片上。 提供第二电极片。 介电层片与第一电极和第二电极片一起卷绕。
    • 7. 发明授权
    • Flexible hybrid plasma-semiconductor transistors and arrays
    • 灵活的混合等离子半导体晶体管和阵列
    • US08816435B2
    • 2014-08-26
    • US13186401
    • 2011-07-19
    • J. Gary EdenPaul A. TchertchianThomas J. HoulahanDane J. SieversBenben LiClark J. Wagner
    • J. Gary EdenPaul A. TchertchianThomas J. HoulahanDane J. SieversBenben LiClark J. Wagner
    • H01L27/12
    • H01L33/02H01J17/066H01J17/49H01L29/0821H01L29/7317
    • Preferred embodiment flexible and on wafer hybrid plasma semiconductor devices have at least one active solid state semiconductor region; and a plasma generated in proximity to the active solid state semiconductor region(s). Doped solid state semiconductor regions are in a thin flexible solid state substrate, and a flexible non conducting material defining a microcavity adjacent the semiconductor regions. The flexible non conducting material is bonded to the thin flexible solid state substrate, and at least one electrode is arranged with respect to said flexible substrate to generate a plasma in said microcavity, where the plasma will influence or perform a semiconducting function in cooperation with said solid state semiconductor regions. A preferred on-wafer device is formed on a single side of a silicon on insulator wafer and defines the collector (plasma cavity), emitter and base regions on a common side, which provides a simplified and easy to manufacture structure. A preferred embodiment array of flexible hybrid plasma transistors of the invention is an n+pn PBJT fabricated between two flexible sheets. One or both of the flexible sheets is transparent. The overall array structure is planar, and the planarized structure is sealed between the two flexible sheets. Visible or ultraviolet light is emitted during operation by plasma collectors in the array. In preferred embodiments, individual PBJTs in the array serve as sub-pixels of a full-color display.
    • 优选实施例柔性和晶片上混合等离子体半导体器件具有至少一个活性固态半导体区域; 以及在活性固态半导体区域附近产生的等离子体。 掺杂的固态半导体区域处于薄的柔性固态衬底和限定邻近半导体区域的微腔的柔性非导电材料。 柔性非导电材料结合到薄柔性固态衬底上,并且相对于所述柔性衬底布置至少一个电极,以在所述微腔中产生等离子体,其中所述等离子体将与所述柔性衬底配合影响或执行半导体功能 固态半导体区域。 优选的晶片上器件形成在绝缘体上硅晶片的单侧上,并且在公共侧上限定了集电体(等离子体腔),发射极和基极区域,这提供了简化且易于制造的结构。 本发明的柔性混合等离子体晶体管的优选实施例阵列是在两个柔性片之间制造的n + pn PBJT。 一个或两个柔性片是透明的。 整个阵列结构是平面的,并且平坦化结构被密封在两个柔性片之间。 在阵列中的等离子体收集器的操作期间发出可见光或紫外光。 在优选实施例中,阵列中的各个PBJT用作全色显示器的子像素。
    • 8. 发明授权
    • Hybrid plasma-semiconductor electronic and optical devices
    • 混合等离子体半导体电子和光学器件
    • US08525276B2
    • 2013-09-03
    • US12817551
    • 2010-06-17
    • Paul A. TchertchianClark J. WagnerJ. Gary Eden
    • Paul A. TchertchianClark J. WagnerJ. Gary Eden
    • H01L27/14
    • H01L29/73H01J17/40H01L29/0821H01L29/1004H01L29/49H01L29/7311H01L29/772H01L29/78
    • The invention provides combination semiconductor and plasma devices, including transistors and phototransistors. A preferred embodiment hybrid plasma semiconductor device has active solid state semiconductor regions; and a plasma generated in proximity to the active solid state semiconductor regions. Devices of the invention are referred to as hybrid plasma-semiconductor devices, in which a plasma, preferably a microplasma, cooperates with conventional solid state semiconductor device regions to influence or perform a semiconducting function, such as that provided by a transistor. The invention provides a family of hybrid plasma electronic/photonic devices having properties previously unavailable. In transistor devices of the invention, a low temperature, glow discharge is integral to the hybrid transistor. Example preferred devices include hybrid BJT and MOSFET devices.
    • 本发明提供了组合半导体和等离子体器件,包括晶体管和光电晶体管。 优选的实施方案是混合等离子体半导体器件具有活性固态半导体区域和在活性固态半导体区域附近产生的等离子体。 本发明的装置被称为混合等离子体半导体器件,其中等离子体,优选微质体与常规固态半导体器件区域配合,以影响或执行诸如由晶体管提供的半导体功能。 本发明提供了具有以前不可用的特性的混合等离子体电子/光子器件系列。 在本发明的晶体管器件中,低温辉光放电是混合晶体管的一部分。 示例性的优选器件包括混合BJT和MOSFET器件。
    • 9. 发明授权
    • Interwoven wire mesh microcavity plasma arrays
    • 交织丝网微腔等离子体阵列
    • US08362699B2
    • 2013-01-29
    • US12682973
    • 2008-10-27
    • J. Gary EdenSung-Jin ParkAndrew J. PriceJason D. ReadleClark J. Wagner
    • J. Gary EdenSung-Jin ParkAndrew J. PriceJason D. ReadleClark J. Wagner
    • H01J17/49H01J9/00
    • H01J17/49H01J61/06H01J61/305H01J61/52H01J61/82
    • Embodiments of the invention provide for large arrays of microcavity plasma devices that can be made inexpensively, and can produce large area but thin displays or lighting sources Interwoven metal wire mesh, such as interwoven Al mesh, consists of two sets of wires which are interwoven in such a way that the two wire sets cross each other, typically at πght angles (90 degrees) although other patterns are also available Fabrication is accomplished with a simple and inexpensive wet chemical etching process The wires in each set are spaced from one another such that the finished mesh forms an array of openings that can be, for example, square, rectangular or diamond-shaped The size of the openings or microcavities is a function of the diameter of the wires in the mesh and the spacing between the wires in the mesh used to form the array of microcavity plasma devices.
    • 本发明的实施例提供了可以廉价制造并且可以生产大面积但薄的显示器或照明源的微腔等离子体装置的大阵列。交织的金属丝网如交织的Al网由两组电线组成, 尽管其他图案也是可用的,这两种线组彼此交叉的方式,通常是直角(90度)通过简单和便宜的湿式化学蚀刻工艺完成。每组中的导线彼此间隔开,使得 完成的网格形成可以是例如正方形,矩形或菱形的开口阵列。开口或微腔的尺寸是网中线的直径和网中线之间的间距的函数 用于形成微腔等离子体装置阵列。
    • 10. 发明授权
    • Method of making arrays of thin sheet microdischarge devices
    • 制备薄片微放电器件阵列的方法
    • US08221179B2
    • 2012-07-17
    • US11981412
    • 2007-10-31
    • J. Gary EdenSung-Jin ParkClark J. Wagner
    • J. Gary EdenSung-Jin ParkClark J. Wagner
    • H01J17/49
    • H01J17/49H01J1/025H01J9/00H01J9/02H01J25/50H01J61/09H01J61/305H01J61/62H01J63/04H01J65/046
    • The cavity 102 defines an empty volume formed in the insulator 108 has its walls defined by the insulator 108 and may extend through either (or both) the first electrode 106 or the second electrode 104, in which case the first electrode and/or second electrode also define the walls of the cavity 102. The cavity 102 is preferably cylindrical and has a diameter of 0.1 μm-1 mm. More preferably, the diameter ranges from 0.1 μm-500 μm, 1 μm-100 μm, or 100 μm-500 μm. The cavity 102 will be filled with a gas that contacts the cavity walls, fills the entire cavity 102 and is selected for its breakdown voltage or light emission properties at breakdown. Light is produced when the voltage difference between the first electrode 106 and the second electrode 104 creates an electric field sufficiently large to electrically break down the gas (nominally about 104 V-cm). This light escapes from the microcavity 102 through at least one end of the cavity 102.
    • 空腔102限定在绝缘体108中形成的空的体积具有由绝缘体108限定的壁,并且可延伸穿过第一电极106或第二电极104(或两者)中的一个或两者,在这种情况下,第一电极和/或第二电极 还限定空腔102的壁。空腔102优选是圆柱形的并且具有0.1μm-1mm的直径。 更优选的是,直径为0.1μm〜500μm,1μm〜100μm或100μm〜500μm。 空腔102将填充有与空腔壁接触的气体,填充整个空腔102,并且在击穿时选择其击穿电压或发光特性。 当第一电极106和第二电极104之间的电压差产生足够大的电场以电气分解气体(标称约为104V-cm)时产生光。 该光通过空腔102的至少一端从微腔102逸出。