会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 16. 发明授权
    • Array of gate dielectric structures to measure gate dielectric thickness and parasitic capacitance
    • 用于测量栅介质厚度和寄生电容的栅介质结构阵列
    • US06964875B1
    • 2005-11-15
    • US10962582
    • 2004-10-13
    • William G. EnMark W. MichaelHai Hong WangSimon Siu-Sing Chan
    • William G. EnMark W. MichaelHai Hong WangSimon Siu-Sing Chan
    • H01L21/66H01L21/8234H01L23/544H01L27/08H01L29/76H01L31/119
    • H01L22/34H01L21/823437H01L27/0811H01L2924/0002H01L2924/00
    • Accurate determination of gate dielectric thickness is required to produce high-reliability and high-performance ultra-thin gate dielectric semiconductor devices. Large area gate dielectric capacitors with ultra-thin gate dielectric layers suffer from high gate leakage, which prevents the accurate measurement of gate dielectric thickness. Accurate measurement of gate dielectric thickness of smaller area gate dielectric capacitors is hindered by the relatively large parasitic capacitance of the smaller area capacitors. The formation of first and second dummy structures on a wafer allow the accurate determination of gate dielectric thickness. First and second dummy structures are formed that are substantially similar to the gate dielectric capacitors except that the first dummy structures are formed without the second electrode of the capacitor and the second dummy structures are formed without the first electrode of the capacitor structure. The capacitance, and therefore thickness, of the gate dielectric capacitor is determined by subtracting the parasitic capacitances measured at the first and second dummy structures.
    • 制造高可靠性和高性能超薄栅极电介质半导体器件需要精确确定栅极电介质厚度。 具有超薄栅极介电层的大面积栅极介质电容器具有高栅极泄漏,这阻止了栅极电介质厚度的精确测量。 较小面积的电介质电容器的栅极电介质厚度的精确测量受到较小面积电容器的相对大的寄生电容的阻碍。 在晶片上形成第一和第二虚拟结构允许准确地确定栅极电介质厚度。 形成基本上类似于栅极介电电容器的第一和第二虚拟结构,除了第一虚拟结构形成而没有电容器的第二电极,并且第二虚拟结构形成而没有电容器结构的第一电极。 通过减去在第一和第二虚拟结构处测量的寄生电容来确定栅极介电电容器的电容,并因此确定厚度。
    • 18. 发明授权
    • Method of preventing dopant depletion in surface semiconductor layer of semiconductor-on-insulator (SOI) device
    • 防止绝缘体上半导体(SOI)器件的表面半导体层中的掺杂剂消耗的方法
    • US06737337B1
    • 2004-05-18
    • US10134972
    • 2002-04-29
    • Simon Siu-Sing ChanQi Xiang
    • Simon Siu-Sing ChanQi Xiang
    • H01L2130
    • H01L21/76254
    • A method of manufacturing a semiconductor device includes forming a buried insulator layer of a semiconductor-on-insulator (SOI) wafer with a dopant material, such as boron, therein. The insulator material with the dopant material may be formed by a number of methods, for example by thermal oxidation of a semiconductor wafer in the presence of an atmosphere containing the dopant material, by co-deposition of the insulator material and the dopant material, or by co-implantation of an insulator material and the dopant material. The dopant material may be the same as a dopant material in at least a region (e.g., a source, drain, or channel region) of a semiconductor material layer which overlies the insulator layer. The dopant material in the buried insulator layer may advantageously reduce the tendency of dopant material to migrate from the overlying material to the insulator layer, such as during manufacturing operations involving heating.
    • 一种制造半导体器件的方法包括在其中用诸如硼的掺杂剂材料形成绝缘体上半导体(SOI)晶片的掩埋绝缘体层。 具有掺杂剂材料的绝缘体材料可以通过多种方法形成,例如通过在包含掺杂剂材料的气氛存在的情况下通过半导体晶片的热氧化,通过绝缘体材料和掺杂剂材料的共沉积,或 通过共注入绝缘体材料和掺杂剂材料。 掺杂剂材料可以与至少覆盖绝缘体层的半导体材料层的区域(例如,源极,漏极或沟道区)中的掺杂剂材料相同。 掩埋绝缘体层中的掺杂剂材料可以有利地降低掺杂剂材料从覆盖材料迁移到绝缘体层的趋势,例如在涉及加热的制造操作期间。