会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Transistor device having an enhanced width dimension and a method of making same
    • 具有增强的宽度尺寸的晶体管器件及其制造方法
    • US06580122B1
    • 2003-06-17
    • US09812521
    • 2001-03-20
    • Derick J. WristersJon D. CheekJohn G. Pellerin
    • Derick J. WristersJon D. CheekJohn G. Pellerin
    • H01L2976
    • G01N27/414
    • The present invention is directed to a transistor having an enhanced width dimension and a method of making same. In one illustrative embodiment, the transistor comprises a semiconducting substrate, a recessed isolation structure formed in the substrate, the isolation structure defining a recess thereabove, a gate electrode and a gate insulation layer positioned above the substrate, a portion of the gate electrode and the gate insulation layer extending into the recess above the recessed isolation structure, and a source region and a drain region formed in the substrate. In another illustrative embodiment, the transistor comprises a semiconducting substrate, a recessed isolation structure that defines an active area having an upper surface and an exposed sidewall surface, a gate insulation layer and a gate electrode positioned above a portion of the upper surface and a portion of the exposed sidewall surface of the active area, and a source region and a drain region formed in the active area.
    • 本发明涉及一种具有增强的宽度尺寸的晶体管及其制造方法。 在一个说明性实施例中,晶体管包括半导体衬底,形成在衬底中的凹陷隔离结构,隔离结构在其上限定凹陷,栅电极和位于衬底上方的栅极绝缘层,栅电极的一部分和 栅极绝缘层延伸到凹陷隔离结构上方的凹部中,以及形成在衬底中的源极区域和漏极区域。 在另一示例性实施例中,晶体管包括半导体衬底,限定具有上表面和暴露侧壁表面的有源区的凹陷隔离结构,位于上表面的一部分上方的栅绝缘层和栅电极, 的有源区域的暴露的侧壁表面,以及形成在有源区域中的源极区域和漏极区域。
    • 5. 发明授权
    • Method for reducing junction capacitance using a halo implant photomask
    • 使用光晕植入光掩模降低结电容的方法
    • US06323095B1
    • 2001-11-27
    • US09489178
    • 2000-01-21
    • Mark W. MichaelJon D. CheekRobert Dawson
    • Mark W. MichaelJon D. CheekRobert Dawson
    • H01L21336
    • H01L29/66492H01L21/26586H01L21/266H01L21/8238H01L29/1083
    • A method for forming a semiconductor device is provided. The method includes providing a substrate having a gate formed thereon. A first doped region is formed in the substrate. The first doped region extends a first distance from the gate. A second doped region is formed in the substrate. The second doped region extends a second distance from the gate. The first distance is less than the second distance. A semiconductor device includes a substrate, isolation structures defined in the substrate, and a gate disposed on the substrate between adjacent isolation structures. A first doped region is defined in the substrate proximate the gate. The first doped region extends a first distance from the gate. A second doped region is defined in the substrate proximate the gate. The second doped region extends a second distance from the gate. The first distance is less than the first distance.
    • 提供一种形成半导体器件的方法。 该方法包括提供其上形成有栅极的基板。 在衬底中形成第一掺杂区。 第一掺杂区域从栅极延伸第一距离。 在衬底中形成第二掺杂区。 第二掺杂区域从栅极延伸第二距离。 第一距离小于第二距离。 半导体器件包括衬底,限定在衬底中的隔离结构以及设置在相邻隔离结构之间的衬底上的栅极。 在靠近栅极的衬底中限定第一掺杂区域。 第一掺杂区域从栅极延伸第一距离。 在靠近栅极的衬底中限定第二掺杂区域。 第二掺杂区域从栅极延伸第二距离。 第一距离小于第一距离。
    • 6. 发明授权
    • Asymmetrical transistor structure
    • 不对称晶体管结构
    • US6104064A
    • 2000-08-15
    • US306508
    • 1999-05-06
    • Daniel KadoshMark I. GardnerMichael DuaneJon D. CheekFred N. HauseRobert DawsonBrad T. Moore
    • Daniel KadoshMark I. GardnerMichael DuaneJon D. CheekFred N. HauseRobert DawsonBrad T. Moore
    • H01L21/28H01L21/336H01L29/78H01L29/76
    • H01L21/28211H01L21/28176H01L29/66659H01L29/7835
    • Various processes are provided for producing a p-channel and/or n-channel transistor. The present processes are thereby applicable to NMOS, PMOS or CMOS integrated circuits, any of which derive a benefit from having an asymmetrical LDD structure. The asymmetrical structure can be produced on a p-channel or n-channel transistor in various ways. According, the present process employs various techniques to form an asymmetrical transistor. The various techniques employ processing steps which vary depending upon the LDD result desired. First, the LDD implant can be performed only in the drain-side of the channel, or in the drain-side as well as the source-side. Second, the gate conductor sidewall surface adjacent the drain can be made thicker than the sidewall surface adjacent the source. Thickening of the drain-side sidewall spacer can be achieved either by depositing oxide upon a nitride-bearing film, or by growing additional oxide upon an exposed silicon surface having the source-side sidewall protected from growth. Third, the drain-side can be enhanced relative to the source-side by using an LTA implant. There may be numerous other modifications and alternative processing steps, all of which are described herein. Regardless of the sequence chosen, a barrier implant may be employed to prevent deleterious ingress of p-type implant species into the channel region. The present fabrication sequence reduces source-side resistance to enhance drive current--a desirable outcome for high speed circuits.
    • 提供了用于产生p沟道和/或n沟道晶体管的各种工艺。 因此,本发明的方法可应用于NMOS,PMOS或CMOS集成电路,其中任何一种从具有不对称的LDD结构中获益。 可以以各种方式在p沟道或n沟道晶体管上产生非对称结构。 据此,本方法采用各种技术形成不对称晶体管。 各种技术采用根据​​所需LDD结果而变化的处理步骤。 首先,LDD注入仅能够在沟道的漏极侧,或者在漏极侧以及源极侧进行。 第二,与漏极相邻的栅极导体侧壁表面可以制成比邻近源极的侧壁表面更厚。 漏极侧壁间隔物的增厚可以通过在氮化物承载膜上沉积氧化物,或通过在具有源极侧壁保护生长的暴露的硅表面上生长另外的氧化物来实现。 第三,可以通过使用LTA植入物相对于源极侧的漏极侧增强。 可以存在许多其它修改和替代的处理步骤,其全部在此描述。 不管选择的顺序如何,可以使用阻挡植入物来防止p型植入物质进入通道区域的有害进入。 本制造顺序降低了源极电阻以增强驱动电流 - 高速电路的期望结果。
    • 7. 发明授权
    • Method for offsetting a silicide process from a gate electrode of a semiconductor device
    • 将硅化物工艺与半导体器件的栅电极相抵消的方法
    • US07179745B1
    • 2007-02-20
    • US10860100
    • 2004-06-04
    • Andrew M. WaiteJon D. CheekDavid Brown
    • Andrew M. WaiteJon D. CheekDavid Brown
    • H01L21/311
    • H01L29/7843H01L29/665H01L29/6653H01L29/66772
    • A method for offsetting silicide on a semiconductor device having a polysilicon gate electrode, source and drain regions in a substrate, and source and drain extensions in the substrate, employs a titanium nitride sidewall spacer on the sidewalls of the polysilicon gate electrode. The titanium nitride sidewall spacer prevents silicide growth on top of the source and drain extensions during a salicidation process. The titanium nitride sidewall spacers are then removed by an etching process that does not etch the silicide regions formed in the source and drain regions and the polysilicon gate electrode. Following removal of the titanium nitride sidewall spacers, a low k interlevel dielectric layer or a stress liner may be deposited on top of the devices to enhance device performance.
    • 一种用于在具有多晶硅栅电极,衬底中的源极和漏极区域以及衬底中的源极和漏极延伸部分的半导体器件上偏移硅化物的方法,在多晶硅栅电极的侧壁上采用氮化钛侧壁间隔物。 氮化钛侧壁间隔物防止了在氧化过程中在源极和漏极延伸部分顶部的硅化物生长。 然后通过蚀刻工艺去除氮化钛侧壁间隔物,该蚀刻工艺不蚀刻在源极和漏极区域以及多晶硅栅极电极中形成的硅化物区域。 在移除氮化钛侧壁间隔物之后,可以将低k层间介电层或应力衬垫沉积在器件的顶部以增强器件性能。
    • 10. 发明授权
    • Isotropically etching sidewall spacers to be used for both an NMOS source/drain implant and a PMOS LDD implant
    • 各向同性蚀刻要用于NMOS源极/漏极注入和PMOS LDD植入物的侧壁间隔物
    • US06316302B1
    • 2001-11-13
    • US09604051
    • 2000-06-26
    • Jon D. CheekDerick J. WristersAnthony J. Toprac
    • Jon D. CheekDerick J. WristersAnthony J. Toprac
    • H01L218238
    • H01L29/6659H01L21/823864H01L29/6656
    • A method is provided for isotropically etching pairs of sidewall spacers to reduce the lateral thickness of each sidewall spacer. In an embodiment, first and second pairs of sidewall spacers are concurrently formed upon the opposed sidewall surfaces of respective first and second gate conductors. The first and second gate conductors are spaced laterally apart upon isolated first and second active areas of a semiconductor substrate, respectively. Advantageously, a single set of sidewall spacer pairs are used as masking structures during the formation of source and drain regions of an NMOS transistor and LDD areas of a PMOS transistor. That is, the n+ source/drain (“S/D”) implant is self-aligned to the outer lateral edge of the first pair of sidewall spacers prior to reducing the lateral thicknesses of the sidewall spacers. However, the p− LDD implant is self-aligned to the outer lateral edge of the second pair of sidewall spacers after the spacer thicknesses have been reduced. Therefore, multiple pairs of sidewall spacers need not be formed laterally adjacent the sidewall surfaces of the gate conductors to vary the spacing between the implant regions and the gate conductors of the ensuing integrated circuit.
    • 提供了一种用于各向同性蚀刻侧壁间隔物对以减少每个侧壁间隔物的横向厚度的方法。 在一个实施例中,第一和第二对侧壁间隔件同时形成在相应的第一和第二栅极导体的相对的侧壁表面上。 第一和第二栅极导体分别在半导体衬底的隔离的第一和第二有源区域上横向间隔开。 有利地,在形成PMOS晶体管的NMOS晶体管和LDD区域的源极和漏极区域期间,单个侧壁间隔物对被用作掩模结构。 也就是说,在减少侧壁间隔物的横向厚度之前,n +源极/漏极(“S / D”)植入物在第一对侧壁间隔物的外侧边缘上自对准。 然而,在间隔物厚度减小之后,p-LDD植入物自对准到第二对侧壁间隔物的外侧边缘。 因此,不需要在栅极导体的侧壁表面附近形成多对侧壁间隔件,以改变注入区域和后续集成电路的栅极导体之间​​的间隔。