会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Self-aligned VT implant
    • 自对准VT植入
    • US06566696B1
    • 2003-05-20
    • US09907359
    • 2001-07-17
    • Jon D. CheekMark MichaelDerick J. WristersJames F. Buller
    • Jon D. CheekMark MichaelDerick J. WristersJames F. Buller
    • H01L2980
    • H01L29/66583H01L29/105H01L29/66537H01L29/66545
    • Integrated circuits with transistors exhibiting improved junction capacitances and various methods of fabricating the same are provided. In one aspect, a method of manufacturing is provided that includes forming a doped region in an active area of a substrate wherein the doped region has a first conductivity type and a first horizontal junction. A first source/drain region of the first conductivity type is formed in the active area with a second horizontal junction. A second source/drain region of the first conductivity type is formed in the active area with a third horizontal junction and a lateral separation from the first source/drain region that defines a channel region. The second and third horizontal junctions are positioned substantially at the first horizontal junction. The portion of the doped region positioned in the channel region is doped with an impurity of a second conductivity type that is opposite to the first conductivity type. Impurity grading across a source/drain-to-body junction is less abrupt, resulting in improved junction capacitance.
    • 提供了具有改善的结电容的晶体管的集成电路及其制造方法。 一方面,提供一种制造方法,其包括在衬底的有源区中形成掺杂区域,其中所述掺杂区域具有第一导电类型和第一水平结。 第一导电类型的第一源极/漏极区域形成在具有第二水平结的有源区域中。 第一导电类型的第二源极/漏极区域在有源区域中形成有第三水平结和与限定沟道区域的第一源极/漏极区域的横向分离。 第二和第三水平接头基本位于第一水平接头处。 位于沟道区域中的掺杂区域的部分掺杂有与第一导电类型相反的第二导电类型的杂质。 通过源极/漏极到体区结的杂质分级不太突然,导致改善的结电容。
    • 2. 发明授权
    • Removable spacer technique
    • 可拆卸间隔技术
    • US06506642B1
    • 2003-01-14
    • US10020931
    • 2001-12-19
    • Scott D. LuningJon D. CheekDaniel KadoshJames F. BullerDavid E. Brown
    • Scott D. LuningJon D. CheekDaniel KadoshJames F. BullerDavid E. Brown
    • H01L218238
    • H01L29/6653H01L21/823814H01L21/823864H01L29/6656
    • Submicron-dimensioned MOS and/or CMOS transistors are fabricated utilizing a simplified removable sidewall spacer technique, enabling effective tailoring of individual transistors to optimize their respective functionality. Embodiments include forming a first sidewall spacer having a first thickness on the side surfaces of a plurality of gate electrodes of transistors, selectively removing the first sidewall spacers from the gate electrodes of certain transistors, and then depositing second sidewall spacers on remaining first sidewall spacers and on the side surfaces of the gate electrodes from which the first sidewall spacers have been removed. Embodiments enable separately tailoring n- and p-MOS transistors as well as individual n- or p-MOS transistors having different functionality, e.g., different drive current and voltage leakage requirements.
    • 亚微米尺寸的MOS和/或CMOS晶体管使用简化的可移除侧壁间隔物技术制造,使得能够有效地定制各个晶体管以优化它们各自的功能。 实施例包括在晶体管的多个栅极电极的侧表面上形成具有第一厚度的第一侧壁间隔物,从某些晶体管的栅电极选择性地去除第一侧壁间隔物,然后在剩余的第一侧壁间隔物上沉积第二侧壁间隔物, 在栅电极的已经被去除了第一侧壁间隔物的侧表面上。 实施例能够单独定制n型和p型MOS晶体管以及具有不同功能的单独n型或p型MOS晶体管,例如不同的驱动电流和电压泄漏要求。
    • 4. 发明授权
    • Self-aligned Vt implant
    • 自对准Vt植入物
    • US06274415B1
    • 2001-08-14
    • US09489068
    • 2000-01-21
    • Jon D. CheekMark MichaelDerick J. WristersJames F. Buller
    • Jon D. CheekMark MichaelDerick J. WristersJames F. Buller
    • H01L21337
    • H01L29/66583H01L29/105H01L29/66537H01L29/66545
    • Integrated circuits with transistors exhibiting improved junction capacitances and various methods of fabricating the same are provided. In one aspect, a method of manufacturing is provided that includes forming a doped region in an active area of a substrate wherein the doped region has a first conductivity type and a first horizontal junction. A first source/drain region of the first conductivity type is formed in the active area with a second horizontal junction. A second source/drain region of the first conductivity type is formed in the active area with a third horizontal junction and a lateral separation from the first source/drain region that defines a channel region. The second and third horizontal junctions are positioned substantially at the first horizontal junction. The portion of the doped region positioned in the channel region is doped with an impurity of a second conductivity type that is opposite to the first conductivity type. Impurity grading across a source/drain-to-body junction is less abrupt, resulting in improved junction capacitance.
    • 提供具有改善的结电容的晶体管的集成电路及其制造方法。 一方面,提供一种制造方法,其包括在衬底的有源区中形成掺杂区域,其中所述掺杂区域具有第一导电类型和第一水平结。 第一导电类型的第一源极/漏极区域形成在具有第二水平结的有源区域中。 第一导电类型的第二源极/漏极区域在有源区域中形成有第三水平结和与限定沟道区域的第一源极/漏极区域的横向分离。 第二和第三水平接头基本位于第一水平接头处。 位于沟道区域中的掺杂区域的部分掺杂有与第一导电类型相反的第二导电类型的杂质。 通过源极/漏极到体区结的杂质分级不太突然,导致改善的结电容。
    • 7. 发明授权
    • Method for offsetting a silicide process from a gate electrode of a semiconductor device
    • 将硅化物工艺与半导体器件的栅电极相抵消的方法
    • US07179745B1
    • 2007-02-20
    • US10860100
    • 2004-06-04
    • Andrew M. WaiteJon D. CheekDavid Brown
    • Andrew M. WaiteJon D. CheekDavid Brown
    • H01L21/311
    • H01L29/7843H01L29/665H01L29/6653H01L29/66772
    • A method for offsetting silicide on a semiconductor device having a polysilicon gate electrode, source and drain regions in a substrate, and source and drain extensions in the substrate, employs a titanium nitride sidewall spacer on the sidewalls of the polysilicon gate electrode. The titanium nitride sidewall spacer prevents silicide growth on top of the source and drain extensions during a salicidation process. The titanium nitride sidewall spacers are then removed by an etching process that does not etch the silicide regions formed in the source and drain regions and the polysilicon gate electrode. Following removal of the titanium nitride sidewall spacers, a low k interlevel dielectric layer or a stress liner may be deposited on top of the devices to enhance device performance.
    • 一种用于在具有多晶硅栅电极,衬底中的源极和漏极区域以及衬底中的源极和漏极延伸部分的半导体器件上偏移硅化物的方法,在多晶硅栅电极的侧壁上采用氮化钛侧壁间隔物。 氮化钛侧壁间隔物防止了在氧化过程中在源极和漏极延伸部分顶部的硅化物生长。 然后通过蚀刻工艺去除氮化钛侧壁间隔物,该蚀刻工艺不蚀刻在源极和漏极区域以及多晶硅栅极电极中形成的硅化物区域。 在移除氮化钛侧壁间隔物之后,可以将低k层间介电层或应力衬垫沉积在器件的顶部以增强器件性能。
    • 10. 发明授权
    • Isotropically etching sidewall spacers to be used for both an NMOS source/drain implant and a PMOS LDD implant
    • 各向同性蚀刻要用于NMOS源极/漏极注入和PMOS LDD植入物的侧壁间隔物
    • US06316302B1
    • 2001-11-13
    • US09604051
    • 2000-06-26
    • Jon D. CheekDerick J. WristersAnthony J. Toprac
    • Jon D. CheekDerick J. WristersAnthony J. Toprac
    • H01L218238
    • H01L29/6659H01L21/823864H01L29/6656
    • A method is provided for isotropically etching pairs of sidewall spacers to reduce the lateral thickness of each sidewall spacer. In an embodiment, first and second pairs of sidewall spacers are concurrently formed upon the opposed sidewall surfaces of respective first and second gate conductors. The first and second gate conductors are spaced laterally apart upon isolated first and second active areas of a semiconductor substrate, respectively. Advantageously, a single set of sidewall spacer pairs are used as masking structures during the formation of source and drain regions of an NMOS transistor and LDD areas of a PMOS transistor. That is, the n+ source/drain (“S/D”) implant is self-aligned to the outer lateral edge of the first pair of sidewall spacers prior to reducing the lateral thicknesses of the sidewall spacers. However, the p− LDD implant is self-aligned to the outer lateral edge of the second pair of sidewall spacers after the spacer thicknesses have been reduced. Therefore, multiple pairs of sidewall spacers need not be formed laterally adjacent the sidewall surfaces of the gate conductors to vary the spacing between the implant regions and the gate conductors of the ensuing integrated circuit.
    • 提供了一种用于各向同性蚀刻侧壁间隔物对以减少每个侧壁间隔物的横向厚度的方法。 在一个实施例中,第一和第二对侧壁间隔件同时形成在相应的第一和第二栅极导体的相对的侧壁表面上。 第一和第二栅极导体分别在半导体衬底的隔离的第一和第二有源区域上横向间隔开。 有利地,在形成PMOS晶体管的NMOS晶体管和LDD区域的源极和漏极区域期间,单个侧壁间隔物对被用作掩模结构。 也就是说,在减少侧壁间隔物的横向厚度之前,n +源极/漏极(“S / D”)植入物在第一对侧壁间隔物的外侧边缘上自对准。 然而,在间隔物厚度减小之后,p-LDD植入物自对准到第二对侧壁间隔物的外侧边缘。 因此,不需要在栅极导体的侧壁表面附近形成多对侧壁间隔件,以改变注入区域和后续集成电路的栅极导体之间​​的间隔。