会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • POLYMERIZATION INITIATED AT THE SIDEWALLS OF CARBON NANOTUBES
    • 碳纳米管侧壁引发聚合
    • WO2005030858A2
    • 2005-04-07
    • PCT/US2004/019769
    • 2004-06-21
    • WILLIAM MARSH RICE UNIVERSITYUNIVERSITY OF HOUSTONTOUR, James, M.HUDSON, Jared, L.KRISHNAMOORTI, RamananYURELKI, KorayMITCHELL, Cynthia, A.
    • TOUR, James, M.HUDSON, Jared, L.KRISHNAMOORTI, RamananYURELKI, KorayMITCHELL, Cynthia, A.
    • C08K9/00
    • C08F4/484B82Y30/00B82Y40/00C01B32/174C01B2202/02C08F2/00C08F112/08C08F292/00C08K3/041C08K9/04C08L67/04
    • The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.
    • 本发明涉及芳基卤化物(例如芳基溴化物)官能化的碳纳米管可用于阴离子聚合方法中以形成在聚合物基质中具有改进的分散能力的聚合物 - 碳纳米管材料。 在该方法中,芳基卤化物与烷基锂物质反应或者与金属反应以分别用芳基 - 锂或芳基 - 金属键代替芳基 - 溴键。 进一步发现,在用去质子化剂去质子化之后,其他官能化的碳纳米管可以类似地用于阴离子聚合过程以形成聚合物 - 碳纳米管材料。 另外或可选地,可以执行开环聚合过程。 与未结合的聚合物类似物相比,由此产生的材料可以自身使用,因为它们具有增强的强度和增强能力。 此外,这些材料还可以与预先形成的聚合物混合,以建立纳米管在其他难分散基质中的相容性和增强的分散性,导致显着改善的材料性能。 所得到的聚合物 - 碳纳米管材料由于其改善的分散能力和可生物降解性也可用于药物递送过程中,并且还可用于支架以促进组织的细胞生长。
    • 8. 发明申请
    • GRAPHENE NANORIBBON COMPOSITES AND METHODS OF MAKING THE SAME
    • 石墨纳米星复合材料及其制备方法
    • WO2012112435A1
    • 2012-08-23
    • PCT/US2012/024846
    • 2012-02-13
    • WILLIAM MARSH RICE UNIVERSITYTOUR, James, M.ZHU, YuRAJI, Abdul-Rahman, O.
    • TOUR, James, M.ZHU, YuRAJI, Abdul-Rahman, O.
    • C01B31/04
    • C09J9/02B82Y30/00B82Y40/00C01B32/184C01B2204/06
    • In some embodiments, the present invention provides graphene nanoribbon composites that include a polymer matrix and graphene nanoribbons that are dispersed in the polymer matrix. In more specific embodiments, the polymer matrix of the composite is an epoxy matrix, and the graphene nanoribbons of the composite include functionalized graphene nanoribbons. In further embodiments, the composites of the present invention further comprise metals, such as tin, copper, gold, silver, aluminum and combinations thereof. Additional embodiments of the present invention pertain to methods of making the graphene nanoribbon composites of the present invention. In some embodiments, such methods include mixing graphene nanoribbons with polymer precursors to form a mixture, and then curing the mixture to form the composite.
    • 在一些实施方案中,本发明提供石墨烯纳米纤维复合材料,其包括分散在聚合物基质中的聚合物基质和石墨烯纳米带。 在更具体的实施方案中,复合材料的聚合物基质是环氧基质,并且复合材料的石墨烯纳米带包括官能化的石墨烯纳米带。 在另外的实施方案中,本发明的复合材料还包括金属,例如锡,铜,金,银,铝及其组合。 本发明的另外的实施方案涉及制备本发明的石墨烯纳米纤维复合材料的方法。 在一些实施方案中,这样的方法包括将石墨烯纳米带与聚合物前体混合以形成混合物,然后固化混合物以形成复合材料。