会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • EDGE TERMINATION HIGH VOLTAGE SEMICONDUCTOR DEVICE
    • 边缘终端高压半导体器件
    • WO2009039014A1
    • 2009-03-26
    • PCT/US2008/075891
    • 2008-09-10
    • MICROSEMI CORPORATIONTSANG, Dah, WenSDRULLA, DumitruZHANG, Jinshu
    • TSANG, Dah, WenSDRULLA, DumitruZHANG, Jinshu
    • H01L29/00
    • H01L29/66712H01L21/761H01L29/0619H01L29/0638H01L29/0878H01L29/404H01L29/7811
    • High voltage semiconductor devices with high-voltage termination structures (100, 200, 300) are constructed on lightly doped substrates (12). Lightly doped p-type substrates (12) are particularly prone to depletion and inversion from positive charges, degrading the ability of associated termination structures to block high voltages. To improve the efficiency and stability of termination structures, second termination regions (23, 223, 323) of the same dopant type as the substrate (12), more heavily doped than the substrate (12) but more lightly doped than first termination regions (22), are positioned adjoining the first termination regions (22). The second termination regions raise the field threshold voltage where the surface is vulnerable and render the termination structure (110) substantially insensitive to positive charges at the surface. The use of higher dopant concentration in the gap region without causing premature avalanche is facilitated by only creating second termination regions (323) for regions lacking field plate (10) protection.
    • 具有高电压端接结构(100,200,300)的高电压半导体器件构造在轻掺杂衬底(12)上。 轻掺杂的p型衬底(12)特别容易从正电荷中消耗和反转,降低了相关终端结构阻挡高电压的能力。 为了提高端接结构的效率和稳定性,与衬底(12)相同的掺杂剂类型的第二端接区域(23,223,323)比衬底(12)掺杂更多,但比第一端接区域更轻掺杂 22)定位成邻接第一端接区域(22)。 第二终端区域提高场表面易受伤害的场阈值电压,并使端接结构(110)对表面的正电荷基本不敏感。 通过仅为缺少场板(10)保护的区域创建第二终止区域(323),便于在间隙区域中使用更高的掺杂剂浓度而不引起过早的雪崩。
    • 3. 发明申请
    • LOW LOSS SIC MOSFET
    • 低损耗SIC MOSFET
    • WO2014204491A1
    • 2014-12-24
    • PCT/US2013/047145
    • 2013-06-21
    • MICROSEMI CORPORATION
    • SDRULLA, DumitruODEKIRK, BruceVANDENBERG, Marc
    • H01L29/78H01L29/16H01L29/423H01L29/10
    • H01L29/7802H01L29/1095H01L29/1608H01L29/42368H01L29/66068H01L29/7395H01L29/7816
    • A Vertical Multiple Implanted Silicon Carbide Power MOSFET (VMIMOSFET) includes a first conductivity semiconductor substrate, a first conductivity semiconductor drift layer on the top of the substrate, a multitude of second conductivity layers implanted in the drift layer. The body layer is where the channel is formed. A first conductivity source layer is interspaced appropriately inside of the second conductivity layers. A gate oxide of a certain thickness and another oxide of a different thickness, a greater thickness than the gate oxide, placed in between the body layers but in such way that its shape does not distort the gate oxide in the channel. A charge compensated body layer of the second conductivity formed outside of the channel region and only at specific high electric field locations in the structure. The device and the manufacturing method deliver a power SiC MOSFET with increased frequency of operation and reduced switching losses.
    • 垂直多重注入碳化硅功率MOSFET(VMIMOSFET)包括第一导电半导体衬底,衬底顶部上的第一导电半导体漂移层,注入漂移层中的多个第二导电层。 身体层是通道形成的地方。 第一导电源层在第二导电层内适当地间隔开。 具有一定厚度的栅极氧化物和不同厚度的另一种氧化物,比栅极氧化物更大的厚度,放置在主体层之间,但是使得其形状不使通道中的栅极氧化物变形。 第二导电体的电荷补偿体层形成在沟道区域外部,并且仅在该结构中的特定高电场位置。 该器件和制造方法提供功率SiC MOSFET,具有更高的工作频率和更低的开关损耗。
    • 4. 发明申请
    • SIC POWER VERTICAL DMOS WITH INCREASED SAFE OPERATING AREA
    • SIC功率垂直DMOS具有增加的安全操作区域
    • WO2014149047A1
    • 2014-09-25
    • PCT/US2013/033330
    • 2013-03-21
    • MICROSEMI CORPORATION
    • SDRULLA, DumitruODEKIRK, BruceVANDERBERG, Marc
    • H01L29/78H01L29/06H01L29/16
    • H01L29/7802H01L29/0696H01L29/0878H01L29/1033H01L29/1095H01L29/1608H01L29/42368H01L29/66068H01L29/7803
    • A SiC Power Semiconductor device of the Field Effect Type (MOSFET, IGBT or the like) with "muted" channel conduction in some cells and with negative temperature coefficient of channel mobility, allowing an optimized thermal management of the cells for increased Safe Operating Area is described. Controlling the location of the Zero Temperature Crossover Point (ZTCP) in relationship to the drain current is achieved by the partition between the "active" and "inactive" ("muted") channels and by adjusting the mobility of the carriers in the channel for the temperature range of interest. The "Thermal management" is realized by surrounding the "active" cells/fingers with "inactive" ones and the "negative" feedback of the drain/collector current due to local increase of the gate bias is achieved by implementing in-situ "ballast" resistors inside of each source contact, among other possibilities.
    • 在一些电池中具有“静音”通道导通和沟道迁移率的负温度系数的场效应型(MOSFET,IGBT等)的SiC功率半导体器件,允许用于增加安全工作面积的电池的优化热管理是 描述。 通过“有源”和“无效”(“静音”)通道之间的分区,并通过调整通道中的载波的移动性来实现与漏极电流相关的零温度交叉点(ZTCP)的位置控制 感兴趣的温度范围。 “热管理”是通过围绕“活动”电池/手指“无效”来实现的,并且由于栅极偏置的局部增加引起的漏极/集电极电流的“负”反馈是通过实施原位“镇流器 “每个源接触器内部的电阻,以及其他可能性。