会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Film thickness measuring method and step measuring method
    • 薄膜厚度测量方法和步骤测量方法
    • US06825938B2
    • 2004-11-30
    • US10095705
    • 2002-03-13
    • Toru MikamiToshihiko Kikuchi
    • Toru MikamiToshihiko Kikuchi
    • G01B1128
    • G01B11/0625
    • A film thickness measuring method comprises projecting white light onto a wafer with a film to be measured and sensing a first reflected light intensity from the wafer, determining the first reflected light intensity in the form of a first light intensity profile with wavelength as the abscissa axis and light intensity as the ordinate axis, projecting the white light onto a reference sample having the same structure as that of the underlying layer below the film and sensing a second reflected light intensity from the sample, determining the second reflected light intensity in the form of a second light intensity profile similarly to the first light intensity profile, calculating a normalized light intensity profile by dividing the first light intensity profile by the second light intensity profile, and calculating the film thickness of the film to be measured from the normalized light intensity profile.
    • 膜厚测量方法包括将白光投射到具有要测量的膜的晶片上,并且从晶片感测第一反射光强度,以波长为横轴的第一光强度分布形式确定第一反射光强度 和光强度作为纵坐标轴,将白光投射到具有与膜下面的下层相同结构的参考样品,并感测来自样品的第二反射光强度,以第二反射光强度形式确定第二反射光强度 与第一光强度分布类似的第二光强度分布,通过将第一光强度分布除以第二光强度分布来计算归一化光强度分布,以及从归一化光强度分布计算待测量的薄膜的膜厚度 。
    • 2. 发明授权
    • Optical measurement for measuring a small space through a transparent surface
    • 通过透明表面测量小空间的光学测量
    • US06806969B2
    • 2004-10-19
    • US10039599
    • 2001-10-19
    • George M. Clifford, Jr.William Gong
    • George M. Clifford, Jr.William Gong
    • G01B1128
    • G01B11/02G01B11/14
    • The invention provides a system and method for reliably and accurately measuring the gap between two materials when the depth of gap is less than the smallest distance that an optical thickness gauge (OTG) is able to measure. The invention is practiced by forming a suitable slot (or a groove, channel, hole or other suitable deformation) having a precisely known depth in at least one material. The sum of the distance of the gap and the depth of the slot is at least equal to the smallest distance that the OTG can measure. The slot is positioned over the materials and under the OTG probe head such that a cavity is formed. The depth of the cavity is measured. Since the distance of the slot is known, the depth of the gap is determined by subtracting the known depth of the slot from the measured depth of the cavity.
    • 本发明提供一种系统和方法,用于当间隙深度小于光学厚度计(OTG)能够测量的最小距离时,可靠且准确地测量两种材料之间的间隙。 通过在至少一种材料中形成具有精确已知深度的合适的槽(或槽,通道,孔或其它合适的变形)来实现本发明。 间隙的距离和槽的深度的总和至少等于OTG可以测量的最小距离。 槽位于材料之上并且位于OTG探针头下方,使得形成空腔。 测量腔的深度。 由于槽的距离是已知的,所以间隙的深度通过从所测量的腔的深度减去槽的已知深度来确定。
    • 4. 发明授权
    • Method and apparatus for multidomain data analysis
    • 用于多域数据分析的方法和装置
    • US06781706B2
    • 2004-08-24
    • US10349262
    • 2003-01-22
    • John J. Sidorowich
    • John J. Sidorowich
    • G01B1128
    • G06K9/6229G01N21/8422G01N21/9501G06N3/126
    • An optical measuring device generates a plurality of measured optical data from inspection of a thin film stack. The measured optical data group naturally into several domains. In turn the thin film parameters associated with the data fall into two categories: local and global. Local “genes” represent parameters that are associated with only one domain, while global genes represent parameters that are associated with multiple domains. A processor evolves models for the data associated with each domain, which models are compared to the measured data, and a “best fit” solution is provided as the result. Each model of theoretical data is represented by an underlying “genotype” which is an ordered set of the genes. For each domain a “population” of genotypes is evolved through the use of a genetic algorithm. The global genes are allowed to “migrate” among multiple domains during the evolution process. Each genotype has a fitness associated therewith based on how much the theoretical data predicted by the genotype differs from the measured data. During the evolution process, individual genotypes are selected based on fitness, then a genetic operation is performed on the selected genotypes to produce new genotypes. Multiple generations of genotypes are evolved until an acceptable solution is obtained or other termination criterion is satisfied.
    • 光学测量装置从薄膜堆叠的检查产生多个测量的光学数据。 测量的光学数据组自然成为几个领域。 反过来,与数据相关的薄膜参数分为两类:局部和全局。 本地“基因”表示仅与一个结构域相关联的参数,而全局基因表示与多个结构域相关联的参数。 处理器演进与每个域相关联的数据的模型,将这些模型与测量数据进行比较,并提供“最佳拟合”解决方案。 理论数据的每个模型由基因“基因型”表示,它是基因的有序集合。 对于每个领域,通过使用遗传算法演变基因型的“群体”。 在进化过程中,全球基因被允许在多个域之间“迁移”。 基于由基因型预测的理论数据与测量数据的不同,每个基因型具有与其相关联的适应度。 在进化过程中,基于适应度选择个体基因型,然后对所选择的基因型进行遗传操作以产生新的基因型。 发展多代基因型,直到获得可接受的解决方案或满足其他终止标准。
    • 5. 发明授权
    • Optical techniques for measuring layer thicknesses and other surface characteristics of objects such as semiconductor wafers
    • 用于测量诸如半导体晶片的物体的层厚度和其它表面特性的光学技术
    • US06654132B1
    • 2003-11-25
    • US09577795
    • 2000-05-24
    • Charles W. SchietingerAnh N. HoangDmitry V. Bakin
    • Charles W. SchietingerAnh N. HoangDmitry V. Bakin
    • G01B1128
    • B24B37/013B24B49/04B24B49/12G01B11/0625G01N21/4738
    • A characteristic of a surface is measured by illuminating the surface with optical radiation over a wide angle and receiving radiation reflected from the surface over an angle that depends on the extend of the illumination angle. An emissivity measurement is made for the surface, and, alternatively, if a reflectivity measurement is made, it becomes more accurate. One application is to measure the thickness of a layer or layers, either a layer made of transparent material or a metal layer. A one or multiple wavelength technique allow very precise measurements of layer thickness. Noise from ambient radiation is minimized by modulating the radiation source at a frequency where such noise is a minimum or non-existent. The measurements may be made during processing of the surface in order to allow precise control of processing semiconductor wafers, flat panel displays, or other articles. A principal application is in situ monitoring of film thickness reduction by chemical-mechanical-polishing (CMP).
    • 通过用广角的光学辐射照射表面并且接收从取决于照明角度的延伸的角度接收从表面反射的辐射来测量表面的特性。 对于表面进行发射率测量,或者如果进行反射率测量,则其变得更准确。 一种应用是测量一层或多层的厚度,即由透明材料或金属层制成的层。 一种或多种波长技术允许对层厚度进行非常精确的测量。 通过以这样的噪声为最小或不存在的频率调制辐射源来最小化来自环境辐射的噪声。 在处理表面期间可以进行测量,以便能够精确地控制半导体晶片,平板显示器或其他物品的处理。 主要应用是通过化学机械抛光(CMP)原位监测膜厚减少。
    • 7. 发明授权
    • Monitor CMP process using scatterometry
    • 使用散点法监测CMP过程
    • US06594024B1
    • 2003-07-15
    • US09886863
    • 2001-06-21
    • Bhanwar SinghRamkumar SubramanianKhoi A. PhanBharath RangarajanCarmen Morales
    • Bhanwar SinghRamkumar SubramanianKhoi A. PhanBharath RangarajanCarmen Morales
    • G01B1128
    • B24B37/005B24B49/12G01N21/47G01N21/9501H01L21/30625
    • One aspect of the present invention relates to an in-line system for monitoring and optimizing an on-going CMP process in order to determine a CMP process endpoint comprising a wafer, wherein the wafer is subjected to the CMP process; a CMP process monitoring system for generating a signature related to wafer dimensions for the wafer subjected to the CMP process; and a signature library to which the generated signature is compared to determine a state of the wafer. Another aspect relates to an in-line method for monitoring and optimizing an on-going CMP process involving providing a wafer, wherein the wafer is subjected to a CMP process; generating a signature associated with the wafer; comparing the generated signature to a signature library to determine a state of the wafer; and using a closed-loop feedback control system for modifying the on-going CMP process according to the determined state of the wafer.
    • 本发明的一个方面涉及用于监测和优化正在进行的CMP工艺的在线系统,以便确定包括晶片的CMP工艺端点,其中晶片经历CMP工艺; 用于生成与经历CMP处理的晶片的晶片尺寸相关的签名的CMP过程监控系统; 以及生成的签名被比较的签名库,以确定晶片的状态。 另一方面涉及用于监测和优化涉及提供晶片的正在进行的CMP工艺的在线方法,其中所述晶片经受CMP工艺; 产生与晶片相关联的签名; 将生成的签名与签名库进行比较以确定晶片的状态; 以及使用闭环反馈控制系统来根据所确定的晶片状态来修正正在进行的CMP工艺。
    • 8. 发明授权
    • Wafer processing apparatus having wafer mapping function
    • 具有晶片映射功能的晶片处理装置
    • US06795202B2
    • 2004-09-21
    • US10712040
    • 2003-11-14
    • Jun EmotoTakeshi KagayaKazuo Yamazaki
    • Jun EmotoTakeshi KagayaKazuo Yamazaki
    • G01B1128
    • H01L21/67265
    • If a plurality of wafers are placed on each shelf of a rack in a pod, some problems will arise in processing processes. In addition, in some apparatus for detecting wafers, driving means having a not so high stability in the speed such as an air-operated cylinder is used for moving the sensor, in order to make the structure simple. In the case that detection is performed while the sensor is moved by such driving means, errors becomes large and it is difficult to detect wafers accurately. The present invention provides a wafer processing apparatus provided with a transmissive wafer detection sensor, a dog having index means and a transmissive sensor for the dog. The wafer processing apparatus calculates the ratio of the duration time of a signal from the transmissive wafer detection sensor and the duration time of a signal from the transmissive sensor for the dog corresponding to the index means and compares the ratio with a threshold value set in advance to determine the number of wafers.
    • 如果将多个晶片放置在盒中的架子的每个搁板上,则在处理过程中将出现一些问题。 此外,在某些用于检测晶片的装置中,为了使结构简单,使用了诸如气动缸的速度不稳定的驱动装置来移动传感器。 在通过这种驱动装置移动传感器时执行检测的情况下,误差变大,并且难以准确地检测晶片。 本发明提供了一种具有透射晶片检测传感器,具有指示装置的狗和用于狗的透射传感器的晶片处理装置。 晶片处理装置计算来自透射晶片检测传感器的信号的持续时间与来自与指示装置相对应的狗的透射传感器的信号的持续时间的比率,并将该比率与预先设定的阈值进行比较 以确定晶片的数量。
    • 10. 发明授权
    • Method of controlling photolithography processes based upon scatterometric measurements of photoresist thickness, and system for accomplishing same
    • 基于光致抗蚀剂厚度的散射测量控制光刻工艺的方法和用于实现其的系统
    • US06529282B1
    • 2003-03-04
    • US09879338
    • 2001-06-11
    • James Broc StirtonRichard J. Markle
    • James Broc StirtonRichard J. Markle
    • G01B1128
    • G03F7/70625
    • The present invention is generally directed to a method of controlling photolithography processes based upon scatterometric measurements of photoresist thickness, and system for accomplishing same. In one embodiment, the method comprises providing a library of optical characteristic traces, each of which corresponds to a grating structure comprised of a plurality of photoresist features having a known thickness, forming at least one grating structure in a layer of photoresist, the formed grating structure being comprised of a plurality of photoresist features having an unknown thickness, and illuminating the formed grating structure. The method further comprises measuring light reflected off of the formed grating structure to generate an optical characteristic trace for the formed grating structure, and determining the unknown thickness of the photoresist features by comparing the generated optical characteristic trace to at least one optical characteristic trace from the library.
    • 本发明一般涉及一种基于光致抗蚀剂厚度的散射测量来控制光刻工艺的方法,以及用于实现其的系统。 在一个实施例中,该方法包括提供光学特性迹线库,每个光栅特征迹线对应于由具有已知厚度的多个光致抗蚀剂特征组成的光栅结构,在光致抗蚀剂层中形成至少一个光栅结构,所形成的光栅 结构由具有未知厚度的多个光致抗蚀剂特征组成,并且照射所形成的光栅结构。 该方法还包括测量从所形成的光栅结构反射的光以产生用于所形成的光栅结构的光学特征迹线,以及通过将所产生的光学特性曲线与从所述光学特征迹线至少一个光学特性迹线进行比较来确定光致抗蚀剂特征的未知厚度 图书馆。