会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Optical techniques for measuring layer thicknesses and other surface characteristics of objects such as semiconductor wafers
    • 用于测量诸如半导体晶片的物体的层厚度和其它表面特性的光学技术
    • US06934040B1
    • 2005-08-23
    • US10672558
    • 2003-09-26
    • Charles W. SchietingerAnh N. HoangDmitry V. Bakin
    • Charles W. SchietingerAnh N. HoangDmitry V. Bakin
    • B24B37/013B24B49/04B24B49/12G01B11/06G01N21/47G01B11/28
    • B24B37/013B24B49/04B24B49/12G01B11/0625G01N21/4738
    • A characteristic of a surface is measured by illuminating the surface with optical radiation over a wide angle and receiving radiation reflected from the surface over an angle that depends on the extend of the illumination angle. An emissivity measurement is made for the surface, and, alternatively, if a reflectivity measurement is made, it becomes more accurate. One application is to measure the thickness of a layer or layers, either a layer made of transparent material or a metal layer. A one or multiple wavelength technique allow very precise measurements of layer thickness. Noise from ambient radiation is minimized by modulating the radiation source at a frequency where such noise is a minimum or non-existent. The measurements may be made during processing of the surface in order to allow precise control of processing semiconductor wafers, flat panel displays, or other articles. A principal application is in situ monitoring of film thickness reduction by chemical-mechanical-polishing (CMP).
    • 通过用广角的光学辐射照射表面并且接收从取决于照明角度的延伸的角度接收从表面反射的辐射来测量表面的特性。 对于表面进行发射率测量,或者如果进行反射率测量,则其变得更准确。 一种应用是测量一层或多层的厚度,即由透明材料或金属层制成的层。 一种或多种波长技术允许对层厚度进行非常精确的测量。 通过以这样的噪声为最小或不存在的频率调制辐射源来最小化来自环境辐射的噪声。 在处理表面期间可以进行测量,以便能够精确地控制半导体晶片,平板显示器或其他物品的处理。 主要应用是通过化学机械抛光(CMP)原位监测膜厚减少。
    • 2. 发明授权
    • Optical techniques for measuring layer thicknesses and other surface characteristics of objects such as semiconductor wafers
    • 用于测量诸如半导体晶片的物体的层厚度和其它表面特性的光学技术
    • US06654132B1
    • 2003-11-25
    • US09577795
    • 2000-05-24
    • Charles W. SchietingerAnh N. HoangDmitry V. Bakin
    • Charles W. SchietingerAnh N. HoangDmitry V. Bakin
    • G01B1128
    • B24B37/013B24B49/04B24B49/12G01B11/0625G01N21/4738
    • A characteristic of a surface is measured by illuminating the surface with optical radiation over a wide angle and receiving radiation reflected from the surface over an angle that depends on the extend of the illumination angle. An emissivity measurement is made for the surface, and, alternatively, if a reflectivity measurement is made, it becomes more accurate. One application is to measure the thickness of a layer or layers, either a layer made of transparent material or a metal layer. A one or multiple wavelength technique allow very precise measurements of layer thickness. Noise from ambient radiation is minimized by modulating the radiation source at a frequency where such noise is a minimum or non-existent. The measurements may be made during processing of the surface in order to allow precise control of processing semiconductor wafers, flat panel displays, or other articles. A principal application is in situ monitoring of film thickness reduction by chemical-mechanical-polishing (CMP).
    • 通过用广角的光学辐射照射表面并且接收从取决于照明角度的延伸的角度接收从表面反射的辐射来测量表面的特性。 对于表面进行发射率测量,或者如果进行反射率测量,则其变得更准确。 一种应用是测量一层或多层的厚度,即由透明材料或金属层制成的层。 一种或多种波长技术允许对层厚度进行非常精确的测量。 通过以这样的噪声为最小或不存在的频率调制辐射源来最小化来自环境辐射的噪声。 在处理表面期间可以进行测量,以便能够精确地控制半导体晶片,平板显示器或其他物品的处理。 主要应用是通过化学机械抛光(CMP)原位监测膜厚减少。
    • 4. 发明授权
    • Optical techniques for measuring layer thicknesses and other surface characteristics of objects such as semiconductor wafers
    • 用于测量诸如半导体晶片的物体的层厚度和其它表面特性的光学技术
    • US06570662B1
    • 2003-05-27
    • US09317697
    • 1999-05-24
    • Charles W. SchietingerAhn N. Hoang
    • Charles W. SchietingerAhn N. Hoang
    • G01B1128
    • B24B37/013B24B49/04B24B49/12G01B11/0625G01N21/4738
    • A characteristic of a surface is measured by illuminating the surface with optical radiation over a wide angle and receiving radiation reflected from the surface over a wide angle. An emissivity measurement can then be made for the surface, and, alternatively, if a reflectivity measurement is made, it becomes more accurate. One application is to measure the thickness of a layer or layers, either a layer made of transparent material or a metal layer. A one or multiple wavelength technique allow very precise measurements of layer thickness. Noise from ambient radiation is minimized by modulating the radiation source at a frequency where such noise is a minimum or non-existent. The measurements may be made during processing of the surface in order to allow precise control of processing semiconductor wafers, flat panel displays, or other articles. A principal application is in situ monitoring of film thickness reduction by chemical-mechanical-polishing (CMP).
    • 表面的特征是通过用广角的光辐射照射该表面并且在广角上接收从表面反射的辐射来测量的。 然后可以对表面进行发射率测量,或者,如果进行反射率测量,则其变得更准确。 一种应用是测量一层或多层的厚度,即由透明材料或金属层制成的层。 一种或多种波长技术允许对层厚度进行非常精确的测量。 通过以这样的噪声为最小或不存在的频率调制辐射源来最小化来自环境辐射的噪声。 在处理表面期间可以进行测量,以便能够精确地控制半导体晶片,平板显示器或其他物品的处理。 主要应用是通过化学机械抛光(CMP)原位监测膜厚减少。
    • 8. 发明授权
    • Non-contact techniques for measuring temperature of radiation-heated
objects
    • 用于测量辐射加热物体温度的非接触式技术
    • US5318362A
    • 1994-06-07
    • US943927
    • 1992-09-11
    • Charles W. SchietingerBruce E. Adams
    • Charles W. SchietingerBruce E. Adams
    • G01J5/00G01J5/02G01J5/08G01J5/60H01L21/26H01L21/66G01J5/28
    • G01J5/602G01J5/0003G01J5/0007G01J5/08G01J5/0818G01J5/0834G01J2005/068G01J5/026
    • A non-contact pyrometric technique is provided for measuring the temperature and/or emissivity of an object that is being heated by electromagnetic radiation within the optical range. The measurement is made at short wavelengths for the best results. The measurement may be made at wavelengths within those of the heating optical radiation, and the resulting potential error from detecting heating radiation reflected from the object is avoided by one of two specific techniques. A first technique utilizes a mirror positioned between the heating lamps and the object, the mirror reflecting a narrow wavelength band of radiation in which the optical pyrometer detector operates. The second technique is to independently measure the a.c. ripple of the heating lamp radiation and subtract the background optical noise from the detected object signal in order to determine temperature and emissivity of the object. Both of these techniques can be combined, if desired.
    • 提供了一种非接触式高温测量技术,用于测量由光学范围内的电磁辐射加热的物体的温度和/或发射率。 在短波长下进行测量以获得最佳效果。 可以在加热光辐射的波长处进行测量,并且通过两种特定技术之一避免从检测从物体反射的加热辐射的结果的潜在误差。 第一种技术利用位于加热灯和物体之间的镜子,镜子反射出光学高温计检测器工作的窄的辐射波长带。 第二种技术是独立测量a.c. 加热灯辐射的波动,并从检测到的物体信号中减去背景光学噪声,以确定物体的温度和发射率。 如果需要,可以组合这两种技术。
    • 9. 发明授权
    • Non-contact techniques for measuring temperature or radiation-heated
objects
    • 用于测量温度或辐射加热物体的非接触式技术
    • US5154512A
    • 1992-10-13
    • US507605
    • 1990-04-10
    • Charles W. SchietingerBruce E. Adams
    • Charles W. SchietingerBruce E. Adams
    • G01J5/00G01J5/02G01J5/08G01J5/60H01L21/26H01L21/66
    • G01J5/602G01J5/0003G01J5/0007G01J5/08G01J5/0818G01J5/0834G01J2005/068G01J5/026
    • A non-contact pyrometric technique is provided for measuring the temperature and/or emissivity of an object that is being heated by electromagnetic radiation within the optical range. The measurement is made at short wavelengths for the best results. The measurement may be made at wavelengths within those of the heating optical radiation, and the resulting potential error from detecting heating radiation reflected from the object is avoided by one of two specific techniques. A first technique utilizes a mirror positioned between the heating lamps and the object, the mirror reflecting a narrow wavelength band of radiation in which the optical pyrometer detector operates. The second technique is to independently measure the a.c. ripple of the heating lamp radiation and subtract the background optical noise from the detected object signal in order to determine temperature and emissivity of the object. Both of these techniques can be combined, if desired.
    • 提供了一种非接触式高温测量技术,用于测量由光学范围内的电磁辐射加热的物体的温度和/或发射率。 在短波长下进行测量以获得最佳效果。 可以在加热光辐射的波长处进行测量,并且通过两种特定技术之一避免从检测从物体反射的加热辐射的结果的潜在误差。 第一种技术利用位于加热灯和物体之间的镜子,镜子反射出光学高温计检测器工作的窄的辐射波长带。 第二种技术是独立测量a.c. 加热灯辐射的波动,并从检测到的物体信号中减去背景光学噪声,以确定物体的温度和发射率。 如果需要,可以组合这两种技术。