会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 7. 发明申请
    • Method for engineering hybrid orientation/material semiconductor substrate
    • 工程混合取向/材料半导体衬底的方法
    • US20060105533A1
    • 2006-05-18
    • US10990180
    • 2004-11-16
    • Yung ChongLiang HsiaChew Ang
    • Yung ChongLiang HsiaChew Ang
    • H01L21/8228
    • H01L21/823807
    • The embodiments provide a structure and a method of manufacturing a semiconductor structure that has a different material in the area where PMOS devices will be formed than in the area where NMOS devices will be formed which is characterized as follows. An embodiment comprises the following steps. A substrate is provided. The substrate has a NMOS area and a PMOS area. We form a NMOS mask over the NMOS area. We form a first semiconductor layer over the PMOS area. We remove the mask. We form a second semiconductor layer over the NMOS area. Then we form an isolation region in the substrate between at least portions of the NMOS and the PMOS areas. We form PMOS devices in the PMOS area and form NMOS devices in the NMOS area.
    • 实施例提供一种制造半导体结构的结构和方法,该半导体结构在将要形成PMOS器件的区域中将具有不同于在其上将形成NMOS器件的区域中的材料,其特征如下。 实施例包括以下步骤。 提供基板。 衬底具有NMOS区域和PMOS区域。 我们在NMOS区域上形成NMOS掩模。 我们在PMOS区域上形成第一半导体层。 我们删除面具。 我们在NMOS区域上形成第二个半导体层。 然后,在NMOS和PMOS区域的至少一部分之间,在衬底中形成隔离区。 我们在PMOS区域中形成PMOS器件,并在NMOS区域中形成NMOS器件。
    • 8. 发明申请
    • Method of forming a relaxed semiconductor buffer layer on a substrate with a large lattice mismatch
    • 在具有大晶格失配的衬底上形成松散半导体缓冲层的方法
    • US20050164473A1
    • 2005-07-28
    • US10763305
    • 2004-01-23
    • Jin LiuDong SohnLiang Hsia
    • Jin LiuDong SohnLiang Hsia
    • C30B29/52H01L21/20H01L29/10C30B1/00
    • C30B29/52H01L21/02381H01L21/0245H01L21/02463H01L21/02502H01L21/0251H01L21/02532H01L21/02543H01L21/0262H01L29/1054Y10S438/933
    • A method of forming a relaxed silicon-germanium layer for use as an underlying layer for a subsequent overlying tensile strain silicon layer, has been developed. The method features initial growth of a underlying first silicon-germanium layer on a semiconductor substrate, compositionally graded to feature the largest germanium content at the interface of the first silicon-germanium layer and the semiconductor substrate, with the level of germanium decreasing as the growth of the graded first silicon-germanium layer progresses. This growth sequence allows the largest lattice mismatch and greatest level of threading dislocations to be present at the bottom of the graded silicon-germanium layer, with the magnitude of lattice mismatch and threading dislocations decreasing as the growth of the graded silicon-germanium layer progresses. In situ growth of an overlying silicon-germanium layer featuring uniform or non-graded germanium content, results in a relaxed silicon-germanium layer with a minimum of dislocations propagating from the underlying graded silicon-germanium layer. In situ growth of a silicon layer results in a tensile strain, low defect density layer to be used for MOSFET device applications.
    • 已经开发了形成用于随后的上覆拉伸应变硅层的下层的松弛硅 - 锗层的方法。 该方法的特征在于半导体衬底上的底层第一硅 - 锗层的初始生长,其组成分级以在第一硅 - 锗层和半导体衬底的界面处具有最大的锗含量,锗的含量随着生长 的分级第一硅锗层进行。 该生长序列允许最大的晶格失配和最高级别的穿透位错存在于渐变硅 - 锗层的底部,随着梯度硅 - 锗层的生长进行,晶格失配和穿透位错的大小减小。 具有均匀或非分级锗含量的上覆硅锗层的原位生长导致松弛的硅 - 锗层,其中最小的位错从下面的梯度硅 - 锗层传播。 硅层的原位生长导致用于MOSFET器件应用的拉伸应变,低缺陷密度层。
    • 9. 发明申请
    • Method to fabricate variable work function gates for FUSI devices
    • 为FUSI设备制造可变功能门的方法
    • US20060160290A1
    • 2006-07-20
    • US11039428
    • 2005-01-20
    • Yung ChongDong SohnChew-Hue AngPurakh VermoLiang Hsia
    • Yung ChongDong SohnChew-Hue AngPurakh VermoLiang Hsia
    • H01L21/8238
    • H01L21/823814H01L21/823835H01L21/823842
    • An embodiment of fabrication of a variable work function gates in a FUSI device is described. The embodiment uses a work function doping implant to dope the polysilicon to achieve a desired work function. Selective epitaxy growth (SEG) is used to form silicon over the source/drain regions. The doped poly-Si gate is fully silicided to form fully silicided gates that have a desired work function. We provide a substrate having a NMOS region and a PMOS region. We form a gate dielectric layer and a gate layer over said substrate. We perform a (gate Vt) gate layer implant process to implant impurities such as P+, As+, B+, BF2+, N+, Sb+, In+, C+, Si+, Ge+ or Ar+ into the gate layer gate in the NMOS gate regions and said PMOS gate regions. We form a cap layer over said gate layer. We pattern said cap layer, said gate layer and said gate dielectric layer to form a NMOS gate and a PMOS gate. Spacers are formed and S/D regions are formed. A metal is deposited over said substrate surface. We anneal said metal layer to form fully silicided NMOS gate and fully silicided PMOS gate.
    • 描述了在FUSI设备中制造可变功函数门的实施例。 该实施例使用功函数掺杂注入来掺杂多晶硅以实现所需的功函数。 选择性外延生长(SEG)用于在源极/漏极区域上形成硅。 掺杂的多晶硅栅极被完全硅化以形成具有所需功函数的完全硅化栅极。 我们提供具有NMOS区和PMOS区的衬底。 我们在所述衬底上形成栅极介电层和栅极层。 我们进行(栅极Vt)栅极层注入工艺,将诸如P +,As +,B +,BF 2 +,N +,Sb +,In +,C +,Si +,Ge +或Ar +的杂质注入栅极层 NMOS栅极区域和所述PMOS栅极区域中的栅极。 我们在所述栅极层上形成覆盖层。 我们对所述盖层,所述栅极层和所述栅极电介质层进行图案化以形成NMOS栅极和PMOS栅极。 形成间隔物并形成S / D区域。 在所述衬底表面上沉积金属。 我们退火所述金属层以形成完全硅化的NMOS栅极和完全硅化的PMOS栅极。