会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Microfabricated structures and processes for manufacturing same
    • US20050067286A1
    • 2005-03-31
    • US10947557
    • 2004-09-22
    • Chong AhnKrishnan TrichurSreeram Appasamy
    • Chong AhnKrishnan TrichurSreeram Appasamy
    • C25D1/10
    • B81C99/009B81B2203/033B81B2203/0361B81B2203/0376C25D1/10
    • Various techniques for the fabrication of highly accurate master molds with precisely defined microstructures for use in plastic replication using injection molding, hot embossing, or casting techniques are disclosed herein. Three different fabrication processes used for master mold fabrication are disclosed wherein one of the processes is a combination of the other two processes. In an embodiment of the first process, a two-step electroplating approach is used wherein one of the metals forms the microstructures and the second metal is used as a sacrificial support layer. Following electroplating, the exact height of the microstructures is defined using a chemical mechanical polishing process. In an embodiment of the second process, a modified electroforming process is used for master mold fabrication. The specific modifications include the use of Nickel-Iron (80:20) as a structural component of the master mold, and the use of a higher saccharin concentration in the electroplating bath to reduce tensile stress during plating and electroforming on the top as well as sides of the dummy substrate to prevent peel off of the electroform. The electroforming process is also well suited towards the fabrication of microstructures with non-rectangular cross sectional profiles. Also disclosed is an embodiment of a simple fabrication process using direct deposition of a curable liquid molding material combined with the electroforming process. Finally, an embodiment of a third fabrication process combines the meritorious features of the first two approaches and is used to fabricate a master mold using a combination of the two-step electroplating plus chemical mechanical polishing approach and the electroforming approach to fabricate highly accurate master molds with precisely defined microstructures. The microstructures are an integral part of the master mold and hence the master mold is more robust and well suited for high volume production of plastic MEMS devices through replication techniques such as injection molding.
    • 2. 发明申请
    • Fully packed capillary electrophoretic separation microchips with self-assembled silica colloidal particles in microchannels and their preparation methods
    • 在微通道中具有自组装二氧化硅胶体颗粒的完全填充的毛细管电泳分离微芯片及其制备方法
    • US20060147344A1
    • 2006-07-06
    • US11241364
    • 2005-09-30
    • Chong AhnSeHwan LeeJongman ParkShigeyoshi HoriikeWon Kim
    • Chong AhnSeHwan LeeJongman ParkShigeyoshi HoriikeWon Kim
    • G01N30/02
    • G01N30/02G01N27/44717G01N30/6095
    • A novel CEC column preparation method for various forms of CEC separation using selectively or fully packed microchannels with self-assembled silica colloidal particles is disclosed. The method relies on the three dimensional uniform silica colloidal packing through selective regions or whole channels resulting in uniform EOF and reproducibility. The fully packed capillary electrophoretic separation microchip is inherently suited for a handheld system since it exploits uniquely fully packed separation channels to achieve better separation efficiency and stability. The fully packed capillary electrophoretic separation microchip can be easily fabricated using low-cost, rapid manufacturing techniques, and can provide high performance for CEC separation with various chromatographic stationary support packing, functionalized surface of packed beads. The fully packed microchannels with self-assembled silica colloidal particles can be applied for preparation of a built-in submicron filter. Embodiments of the present invention address a significant challenge in the development of disposable CEC microchips, specifically, providing a reliable solution for preparation of the CEC separation column in a device that may be immediately applied for a variety of CEC applications.
    • 公开了一种用于使用具有自组装二氧化硅胶体颗粒的选择性或完全包装的微通道的各种形式的CEC分离的新型CEC柱制备方法。 该方法依赖于通过选择性区域或全部通道的三维均匀二氧化硅胶体填充,导致均匀的EOF和再现性。 完全包装的毛细管电泳分离微芯片本质上适用于手持系统,因为它利用独特的完全包装的分离通道以实现更好的分离效率和稳定性。 完全包装的毛细管电泳分离微芯片可以使用低成本,快速的制造技术容易地制造,并且可以为各种色谱固定支持填料,填充珠的功能化表面的CEC分离提供高性能。 具有自组装二氧化硅胶体颗粒的完全包装的微通道可用于制备内置亚微米过滤器。 本发明的实施例解决了一次性CEC微芯片开发中的重大挑战,具体地说,提供了可以立即应用于各种CEC应用的装置中CEC分离柱的制备的可靠解决方案。
    • 3. 发明申请
    • On-chip sample preparation for whole blood analysis
    • 全血分析片上样品制备
    • US20050069459A1
    • 2005-03-31
    • US10946685
    • 2004-09-22
    • Chong AhnAniruddha PuntambekarAlok JainJungyoup Han
    • Chong AhnAniruddha PuntambekarAlok JainJungyoup Han
    • B01L99/00B01L11/00
    • B01D45/00B01D21/283B01L3/502746B01L3/502753B01L3/502761B01L3/502784B01L2200/0668B01L2200/146B01L2300/0816B01L2300/0861B01L2400/0487B01L2400/084B01L2400/086G01N33/491
    • A novel filter-less separation technique for separating suspended particles from a solution is disclosed. More specifically, an on-chip bioparticle separator is disclosed, which relies on the differential force exerted by application of a series of high magnitude, short duration pressure pulses on bioparticles in suspension within microchannels, resulting in separation of suspended bioparticles. The filter-less separation technique is inherently suited to μTAS (Micro Total Analysis System) since it exploits uniquely microscale phenomena to achieve separation. The on-chip bioparticle separator can be easily integrated with a disposable biochip, can be fabricated using low-cost, rapid manufacturing techniques, and can provide high performance for separation of bioparticles without the use of specialized or expensive equipment. Embodiments of the present invention address a significant challenge in the development of disposable microfluidic biochips, specifically, providing a reliable solution for separating bioparticles in a microfluidic system that may be immediately applied for a variety of microfluidic biochip applications.
    • 公开了一种用于从溶液中分离悬浮颗粒的新型无滤膜分离技术。 更具体地,公开了片上生物颗粒分离器,其依赖于通过在微通道内的悬浮液中的生物颗粒上施加一系列高幅度,短持续时间的压力脉冲而施加的差分力,导致悬浮的生物颗粒的分离。 无过滤器分离技术固有地适用于muTAS(微总体分析系统),因为它利用独特的微观现象来实现分离。 片上生物颗粒分离器可以容易地与一次性生物芯片集成,可以使用低成本,快速的制造技术制造,并且可以提供高性能用于分离生物颗粒而不使用专门的或昂贵的设备。 本发明的实施方案解决了一次性微流体生物芯片开发中的重大挑战,具体地说,为微流体系统中分离生物颗粒提供了可靠的解决方案,微流体系统可立即应用于各种微流体生物芯片应用。
    • 4. 发明申请
    • Functional on-chip pressure generator using solid chemical propellant
    • 使用固体化学推进剂的功能片上压力发生器
    • US20050232817A1
    • 2005-10-20
    • US10946818
    • 2004-09-22
    • Chong AhnChein-Chong HongSuresh MurugesanSanghyo KimGregory Beaucage
    • Chong AhnChein-Chong HongSuresh MurugesanSanghyo KimGregory Beaucage
    • B01L3/00
    • B01L3/50273B01L2300/0816B01L2400/0442B01L2400/046
    • A functional on-chip pressure source using a solid propellant chemical material is disclosed which, upon heating to a critical temperature, liberates a precise amount of gas which, when liberated within an enclosed cavity coupled to a liquid in a microfluidic channel, raises the pressure and causes precise displacement of the liquid. The functional on-chip pressure source may be easily integrated with a disposable biochip, may be fabricated using low-cost, high volume manufacturing techniques, uses very low power, and may provide a dynamically variable output pressure across a broad spectrum of pressures. Embodiments of the present invention address significant challenges in the development of disposable microfluidic biochips including providing a reliable solution for pumping liquids in a microfluidic system and immediately applying the solution to a variety of microfluidic biochip applications.
    • 公开了使用固体推进剂化学材料的功能性片上压力源,其在加热至临界温度时释放精确量的气体,当在与微流体通道中的液体耦合的封闭空腔内释放时,气体升高压力 并导致液体的精确位移。 功能片上压力源可以容易地与一次性生物芯片集成,可以使用低成本,高容量制造技术制造,使用非常低的功率,并且可以在宽范围的压力下提供动态可变的输出压力。 本发明的实施例解决了一次性微流体生物芯片开发中的重大挑战,包括提供用于在微流体系统中泵送液体的可靠解决方案,并立即将该解决方案应用于各种微流体生物芯片应用。
    • 5. 发明申请
    • Fully integrated protein lab-on-a-chip with smart microfluidics for spot array generation
    • 完全集成的蛋白质实验室芯片与智能微流体阵列生成
    • US20050130226A1
    • 2005-06-16
    • US10947576
    • 2004-09-22
    • Chong AhnJunhai KaiYoung-Soo Sohn
    • Chong AhnJunhai KaiYoung-Soo Sohn
    • C12M1/34G01N33/53G01N33/537G01N33/543H01L21/00
    • B81C1/00206B81B2201/051G01N33/54353G01N33/54393
    • Techniques for the fabrication of fully-integrated lab-on-a-chips (or biochips) specifically oriented towards point-of-care detection of biomolecules using immunoassay based detection techniques are disclosed. A primary task for the development of such biochips is the development of techniques to precisely deposit and localize the capture antibody on pre-determined locations over the biochip. The use of selective surface modification, specifically control over the surface energy, to achieve localized adsorption of the capture antibody is disclosed. Another approach, also disclosed, describes the use of smart passive microfluidics to confine the flow of the capture antibody along certain paths of the biochip and thereby control the locations over which the capture antibody is adsorbed. Furthermore, the use of an integrated microlens array as means of enhancing the detection sensitivity of the biochip is also disclosed.
    • 公开了使用基于免疫测定的检测技术来制造专门针对生物分子的护理点检测的完全整合的芯片上实验室(或生物芯片)的技术。 开发这样的生物芯片的主要任务是开发在生物芯片上的预定位置上精确沉积和定位捕获抗体的技术。 公开了使用选择性表面改性,特别是控制表面能来实现捕获抗体的局部吸附。 还公开了另一种方法,描述了使用智能被动微流体将捕获抗体的流动限制在生物芯片的某些路径上,从而控制捕获抗体吸附的位置。 此外,还公开了使用集成微透镜阵列作为增强生物芯片的检测灵敏度的手段。
    • 7. 发明申请
    • Smart disposable plastic lab-on-a-chip for point-of-care testing
    • 智能一次性塑料实验室用于点护理测试
    • US20050130292A1
    • 2005-06-16
    • US10947577
    • 2004-09-22
    • Chong AhnJin-Woo ChoiGregory BeaucageJoseph Nevin
    • Chong AhnJin-Woo ChoiGregory BeaucageJoseph Nevin
    • A61M31/00C12M1/34C12Q1/68H01L21/00
    • A61B5/1495A61B5/14532A61B5/1486
    • Disclosed herein is a fully-integrated, disposable biochip for point-of-care testing of clinically relevant parameters. Specifically, in accordance with an embodiment of the present invention, the biochip is designed for POCT (point-of-care-testing) of an array of metabolic parameters including partial pressure of oxygen, Glucose, and Lactate concentration from venous blood samples. The biochip is fabricated on a low-cost plastic substrate using mass manufacturing compatible fabrication processes. Furthermore, the biochip contains a fully-integrated metallic micro-needle for blood sampling. The biochip also uses smart passive microfluidics in conjunction with low-power functional on-chip pressure generators for microfluidic sequencing. The design, configuration, assembly and operation of the biochip are ideally suited for a disposable biochip specifically targeted towards POCT applications.
    • 本文公开了一种完全集成的一次性生物芯片,用于临床相关参数的护理点测试。 具体地,根据本发明的实施例,生物芯片被设计用于代谢参数阵列的POCT(点护理测试),包括来自静脉血样品的氧分压,葡萄糖和乳酸盐浓度。 使用大规模制造兼容的制造工艺,在低成本塑料基板上制造生物芯片。 此外,生物芯片包含用于血液取样的完全集成的金属微针。 生物芯片还使用智能无源微流体结合低功耗片上压力发生器进行微流控测序。 生物芯片的设计,配置,组装和操作非常适合专门针对POCT应用的一次性生物芯片。