会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 8. 发明申请
    • System and Method for Lesion Detection Using Locally Adjustable Priors
    • 使用局部可调节的病变检测系统和方法
    • US20090092300A1
    • 2009-04-09
    • US12241183
    • 2008-09-30
    • Anna JerebkoMarcos SalganicoffManeesh DewanHarald Steck
    • Anna JerebkoMarcos SalganicoffManeesh DewanHarald Steck
    • G06K9/00
    • G06K9/6278G06K2209/05G06K2209/053G06T7/0012G06T7/11G06T7/143G06T2207/30028G06T2207/30061
    • According to an aspect of the invention, a method for training a classifier for classifying candidate regions in computer aided diagnosis of digital medical images includes providing a training set of annotated images, each image including one or more candidate regions that have been identified as suspicious, deriving a set of descriptive feature vectors, where each candidate region is associated with a feature vector. A subset of the features are conditionally dependent, and the remaining features are conditionally independent. The conditionally independent features are used to train a naïve Bayes classifier that classifies the candidate regions as lesion or non-lesion. A joint probability distribution that models the conditionally dependent features, and a prior-odds probability ratio of a candidate region being associated with a lesion are determined from the training images. A new classifier is formed from the naïve Bayes classifier, the joint probability distribution, and the prior-odds probability ratio.
    • 根据本发明的一个方面,一种训练分类器的方法,用于对数字医学图像的计算机辅助诊断中的候选区域进行分类,包括提供注释图像的训练集,每个图像包括已被识别为可疑的一个或多个候选区域, 导出一组描述性特征向量,其中每个候选区域与特征向量相关联。 特征的子集有条件依赖,其余的特征是有条件的独立的。 条件独立的特征用于训练将候选区域分类为病变或非损伤的朴素贝叶斯分类器。 从训练图像确定与条件相关特征建模的联合概率分布以及与病变相关联的候选区域的先验概率概率。 从初始贝叶斯分类器,联合概率分布和先验概率概率比构成新的分类器。
    • 9. 发明申请
    • System and Method for Medical Predictive Models Using Likelihood Gamble Pricing
    • 使用似然Gamble定价的医学预测模型的系统和方法
    • US20080301077A1
    • 2008-12-04
    • US12128947
    • 2008-05-29
    • Glenn FungPhan Hong GiangHarald SteckR. Bharat Rao
    • Glenn FungPhan Hong GiangHarald SteckR. Bharat Rao
    • G06N5/04
    • G06K9/6278G06F19/00G16H50/20
    • A method for predicting survival rates of medical patients includes providing a set D of survival data for a plurality of medical patients, providing a regression model having an associated parameter vector β, providing an example x0 of a medical patient whose survival probability is to be classified, calculating a parameter vector {circumflex over (β)} that maximizes a log-likelihood function of β over the set of survival data, l(β|D), wherein the log likelihood l(β|D) is a strictly concave function of β and is a function of the scalar xβ, calculating a weight w0 for example x0, calculating an updated parameter vector β* that maximizes a function l(β|D∪{(y0,x0,w0)}), wherein data points (y0,x0,w0) augment set D, calculating a fair log likelihood ratio λƒ from {circumflex over (β)} and β* using λƒ=λ(β*|x0)+sign(λ({circumflex over (β)}|x0)){l({circumflex over (β)}|D)−l(β*|D)}, and mapping the fair log likelihood ratio λƒ to a fair price y0ƒ, wherein said fair price is a probability that class label y0 for example x0 has a value of 1.
    • 一种用于预测医疗患者的存活率的方法包括为多个医疗患者提供生存数据的集合D,提供具有相关联的参数向量β的回归模型,提供其生存概率被分类的医疗患者的示例x0 计算生存数据集合l(β| D)使β的对数似然函数最大化的参数向量{circumflex over(beta)},其中对数似然l(β| D)是严格凹函数 并且是标量xbeta的函数,计算例如x0的权重w0,计算最大化函数l(β|D∪{(y0,x0,w0)})的更新参数向量β*,其中数据点 (y0,x0,w0)增加集合D,使用lambdaf = lambda(beta * | x0)+ sign(lambda({circumflex over(beta))从{circumflex over(beta)}和beta *计算公平对数似然比lambdaf } | x0)){l({circumflex over(beta)} | D)-l(beta * | D)},并映射公平对数似然比 mbdaf以公平价格y0f,其中所述公平价格是类标签y0,例如x0具有值1的概率。