会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • System and method for lesion detection using locally adjustable priors
    • 使用局部可调节先验的病变检测系统和方法
    • US07876943B2
    • 2011-01-25
    • US12241183
    • 2008-09-30
    • Anna JerebkoMarcos SalganicoffManeesh DewanHarald Steck
    • Anna JerebkoMarcos SalganicoffManeesh DewanHarald Steck
    • G06K9/00A61B5/00
    • G06K9/6278G06K2209/05G06K2209/053G06T7/0012G06T7/11G06T7/143G06T2207/30028G06T2207/30061
    • According to an aspect of the invention, a method for training a classifier for classifying candidate regions in computer aided diagnosis of digital medical images includes providing a training set of annotated images, each image including one or more candidate regions that have been identified as suspicious, deriving a set of descriptive feature vectors, where each candidate region is associated with a feature vector. A subset of the features are conditionally dependent, and the remaining features are conditionally independent. The conditionally independent features are used to train a naïve Bayes classifier that classifies the candidate regions as lesion or non-lesion. A joint probability distribution that models the conditionally dependent features, and a prior-odds probability ratio of a candidate region being associated with a lesion are determined from the training images. A new classifier is formed from the naïve Bayes classifier, the joint probability distribution, and the prior-odds probability ratio.
    • 根据本发明的一个方面,一种训练分类器的方法,用于对数字医学图像的计算机辅助诊断中的候选区域进行分类,包括提供注释图像的训练集,每个图像包括已被识别为可疑的一个或多个候选区域, 导出一组描述性特征向量,其中每个候选区域与特征向量相关联。 特征的子集有条件依赖,其余的特征是有条件的独立的。 条件独立的特征用于训练将候选区域分类为病变或非损伤的朴素贝叶斯分类器。 从训练图像确定与条件相关特征建模的联合概率分布以及与病变相关联的候选区域的先验概率概率。 从初始贝叶斯分类器,联合概率分布和先验概率概率比构成新的分类器。
    • 5. 发明申请
    • System and Method for Lesion Detection Using Locally Adjustable Priors
    • 使用局部可调节的病变检测系统和方法
    • US20090092300A1
    • 2009-04-09
    • US12241183
    • 2008-09-30
    • Anna JerebkoMarcos SalganicoffManeesh DewanHarald Steck
    • Anna JerebkoMarcos SalganicoffManeesh DewanHarald Steck
    • G06K9/00
    • G06K9/6278G06K2209/05G06K2209/053G06T7/0012G06T7/11G06T7/143G06T2207/30028G06T2207/30061
    • According to an aspect of the invention, a method for training a classifier for classifying candidate regions in computer aided diagnosis of digital medical images includes providing a training set of annotated images, each image including one or more candidate regions that have been identified as suspicious, deriving a set of descriptive feature vectors, where each candidate region is associated with a feature vector. A subset of the features are conditionally dependent, and the remaining features are conditionally independent. The conditionally independent features are used to train a naïve Bayes classifier that classifies the candidate regions as lesion or non-lesion. A joint probability distribution that models the conditionally dependent features, and a prior-odds probability ratio of a candidate region being associated with a lesion are determined from the training images. A new classifier is formed from the naïve Bayes classifier, the joint probability distribution, and the prior-odds probability ratio.
    • 根据本发明的一个方面,一种训练分类器的方法,用于对数字医学图像的计算机辅助诊断中的候选区域进行分类,包括提供注释图像的训练集,每个图像包括已被识别为可疑的一个或多个候选区域, 导出一组描述性特征向量,其中每个候选区域与特征向量相关联。 特征的子集有条件依赖,其余的特征是有条件的独立的。 条件独立的特征用于训练将候选区域分类为病变或非损伤的朴素贝叶斯分类器。 从训练图像确定与条件相关特征建模的联合概率分布以及与病变相关联的候选区域的先验概率概率。 从初始贝叶斯分类器,联合概率分布和先验概率概率比构成新的分类器。
    • 8. 发明申请
    • HIERARCHICAL CLASSIFIER FOR DATA CLASSIFICATION
    • 用于数据分类的分层分类器
    • US20110044534A1
    • 2011-02-24
    • US12887640
    • 2010-09-22
    • Maneesh DewanGerardo Hermosillo ValadezZhao YiYiqiang Zhan
    • Maneesh DewanGerardo Hermosillo ValadezZhao YiYiqiang Zhan
    • G06K9/62
    • G06K9/6219G06K9/6209G06K2209/051
    • Described herein is a framework for constructing a hierarchical classifier for facilitating classification of digitized data. In one implementation, a divergence measure of a node of the hierarchical classifier is determined. Data at the node is divided into at least two child nodes based on a splitting criterion to form at least a portion of the hierarchical classifier. The splitting criterion is selected based on the divergence measure. If the divergence measure is less than a predetermined threshold value, the splitting criterion comprises a divergence-based splitting criterion which maximizes subsequent divergence after a split. Otherwise, the splitting criterion comprises an information-based splitting criterion which seeks to minimize subsequent misclassification error after the split.
    • 这里描述了用于构建用于促进数字化数据的分类的分级分类器的框架。 在一个实现中,确定分级分类器的节点的发散度量度。 基于分割标准将节点处的数据划分为至少两个子节点,以形成分级分类器的至少一部分。 基于分歧度量选择分割标准。 如果发散度小于预定阈值,则分割标准包括基于发散的分裂标准,其使分裂后的随后发散最大化。 否则,分割标准包括基于信息的分割标准,其寻求在分裂之后使随后的错误分类错误最小化。