会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Personalized prognosis modeling in medical treatment planning
    • 医疗策划中的个性化预后建模
    • US08579784B2
    • 2013-11-12
    • US12944288
    • 2010-11-11
    • Sriram KrishnanR. Bharat RaoChristopher Jude Amies
    • Sriram KrishnanR. Bharat RaoChristopher Jude Amies
    • A61N5/00
    • A61N5/103A61N2005/1041G06F19/00G06F19/3481G16H50/30G16H50/50
    • Automated treatment planning is provided with individual specific consideration. One or more prognosis models indicate survivability as a function of patient specific information for a given dose. By determining survivability for a plurality of doses, the biological model represented by survivability as a function of dose is determined from the specific patient. Similarly, the chances of complications or side effects are determined. The chance of survivability and chance of complication are used as or instead of the tumor control probability and normal tissue complications probability, respectively. The desired tumor dosage and tolerance dosage are selected as a function of the patient specific dose distributions. The selected dosages are input to an inverse treatment planning system for establishing radiation treatment parameters.
    • 提供自动化治疗计划,具体考虑。 一个或多个预后模型表明作为给定剂量的患者特异性信息的函数的存活率。 通过确定多个剂量的存活率,从特定患者确定作为剂量的函数的存活率所表示的生物学模型。 类似地,确定并发症或副作用的机会。 生存能力和并发症的机会分别被用作肿瘤控制概率和正常组织并发症概率。 选择所需的肿瘤剂量和耐受剂量作为患者具体剂量分布的函数。 选择的剂量被输入到用于建立放射治疗参数的反向治疗计划系统。
    • 10. 发明申请
    • System and method for feature identification in digital images based on rule extraction
    • 基于规则提取的数字图像中特征识别的系统和方法
    • US20050286773A1
    • 2005-12-29
    • US11145886
    • 2005-06-06
    • Glenn FungSathyakama SandilyaR. Bharat Rao
    • Glenn FungSathyakama SandilyaR. Bharat Rao
    • G06K9/62G06K9/00
    • G06K9/6253G06K9/626G06K9/6269
    • A method for classifying features in a digital medical image includes providing a plurality of feature points in an N-dimensional space, wherein each feature point is a member of one of two sets, determining a classifying plane that separates feature points in a first of the two sets from feature points in a second of the two sets, transforming the classifying plane wherein a normal vector to said transformed classifying plane has positive coefficients and a feature domain for one or more feature points of one set is a unit hypercube in a transformed space having n axes, obtaining an upper bound along each of the n-axes of the unit hypercube, inversely transforming said upper bound to obtain a new rule containing one or more feature points of said one set, and removing the feature points contained by said new rule from said one set.
    • 一种用于对数字医学图像中的特征进行分类的方法包括在N维空间中提供多个特征点,其中每个特征点是两组中的一个的成员,确定分类平面, 在两组中的第二组中的特征点中的两组,变换分类平面,其中向所述变换的分类平面的法向量具有正系数,并且一组中的一个或多个特征点的特征域是变换空间中的单位超立方体 具有n个轴,获得沿着单位超立方体的每个n轴的上限,逆变换所述上限以获得包含所述一个集合的一个或多个特征点的新规则,以及移除由所述新立体包含的特征点 规则来自所述一套。