会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 8. 发明授权
    • Method of growing cobalt silicide films by chemical vapor deposition
    • 通过化学气相沉积法生长钴硅化物膜的方法
    • US4814294A
    • 1989-03-21
    • US079564
    • 1987-07-30
    • Gary A. WestKarl W. Beeson
    • Gary A. WestKarl W. Beeson
    • C23C16/42H01L21/20H01L21/28H01L21/285
    • H01L21/28581C23C16/42H01L21/28097H01L21/28518
    • This invention relates to an improved method of depositing cobalt silicide films on a substrate by chemical vapor deposition at a temperature range of about 100.degree.-400.degree. C. By employing two separate precursors of, preferably, for cobalt, comprised of cobalt carbonyls having a vapor pressure sufficiently high to provide a cobalt stream to support chemical vapor deposition, and for silicon, comprised of silanes or halogenated silanes having a vapor pressure sufficient to support chemical vapor deposition, a cobalt silicide film is grown. The ratio of silicon to cobalt is controlled precisely by varying the substrate temperature while the process is being conducted. In a more specific aspect, the films are grown on substrates of either gallium arsenide or silicon. In the case of silicon, epitaxial growth of the cobalt silicide film is achieved by specific control of process parameters.
    • 本发明涉及一种在约100-400℃的温度范围内通过化学气相沉积在基底上沉积钴硅化物薄膜的改进方法。通过使用两个独立的钴,优选钴的前体,其由具有 蒸汽压力足够高以提供钴流以支持化学气相沉积,并且对于由具有足以支持化学气相沉积的蒸气压的硅烷或卤代硅烷构成的硅生长硅化钴膜。 在进行处理时,通过改变衬底温度来精确控制硅与钴的比例。 在更具体的方面,膜在砷化镓或硅的衬底上生长。 在硅的情况下,通过具体控制工艺参数来实现硅化钴膜的外延生长。
    • 10. 发明授权
    • Stable suspensions of boron, phosphorus, antimony and arsenic dopants
    • 硼,磷,锑和砷掺杂剂的稳定悬浮液
    • US4490192A
    • 1984-12-25
    • US502360
    • 1983-06-08
    • Arunava GuptaGary A. WestJeffrey P. Donlan
    • Arunava GuptaGary A. WestJeffrey P. Donlan
    • C30B31/02H01L21/22H01L21/225
    • C30B31/02H01L21/2225H01L21/2254H01L21/2257Y10S252/95Y10S252/951
    • Semiconductor doping compositions comprising a suspension of (a) a dopant material, in the form of finely divided spherical particles of narrow size distribution from about 0.1 D to D, where D is the diameter of the largest particle and is no more than about (1.mu.) comprising a member selected from the group consisting of B.sub.x Si.sub.y, B.sub.x N.sub.y, P.sub.x Si.sub.y, P.sub.x N.sub.y, As.sub.x Si.sub.y and Sb.sub.x Si.sub.y wherein x and y vary from about 0.001 to about 99.999 mole percent, (b) an effective amount of a thermally degradable polymeric organic binder such as polymethyl methacrylate; and (c) an amount of an organic solvent, such a cyclohexanone, sufficient to dissolve said polymeric organic binder, such as polymethylmethacrylate, and to disperse said dopant material are disclosed. Three diffusion processes using the semiconductor doping compositions of the present invention for preparation of semiconductor materials having a wide range of sheet resistances and junction depths are also disclosed. The dopant materials selected for the semiconductor compositions of the present invention are less sensitive to moisture and chemical degradation and thereby afford greater processing latitude, are more reproducible and are less prone to create damage to and/or staining of the semiconductor substrate.
    • 半导体掺杂组合物,其包含(a)掺杂剂材料的悬浮液,所述掺杂剂材料为从0.1D到D的窄尺寸分布的精细分散的球形颗粒形式,其中D是最大颗粒的直径且不大于约(1 包括选自BxSiy,BxNy,PxSiy,PxNy,AsxSiy和SbxSiy的成员,其中x和y从约0.001至约99.999摩尔%变化,(b)有效量的可热降解的聚合有机粘合剂,例如 作为聚甲基丙烯酸甲酯; 和(c)公开了一定量的足以溶解所述聚合物有机粘合剂的有机溶剂,例如环己酮,例如聚甲基丙烯酸甲酯,并分散所述掺杂剂材料。 还公开了使用本发明的半导体掺杂组合物制备具有宽范围的薄层电阻和结深度的半导体材料的三个扩散方法。 为本发明的半导体组合物选择的掺杂剂材料对水分和化学降解较不敏感,从而提供更大的加工范围,更可再现,并且不太容易对半导体衬底造成损害和/或染色。