会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 85. 发明申请
    • SYSTEMS AND METHODS FOR SCALE-UP OF CONTINUOUS FLOW REACTORS
    • 连续流动反应器定标系统及方法
    • US20140115871A1
    • 2014-05-01
    • US14125720
    • 2012-06-07
    • Roland GuidatOlivier LobetPierr Woehl
    • Roland GuidatOlivier LobetPierr Woehl
    • B01J19/00
    • B01J19/0053B01J19/0093B01J2219/00015B01J2219/00824B01J2219/00831B01J2219/0086B01J2219/00873B01J2219/00995Y10T29/49
    • A method is disclosed for the seamless scale-up of a micro reactor process, to transfer lab test to a pilot or production unit, the process comprising the steps of using a wall material for the lab reactor with a thermal conductivity lower than 3 W/m-K, and using a wall material for the production reactor with a thermal conductivity higher than 5 W/m-K. According to one preferred embodiment, the velocity is kept constant, and the height of the channel is determined, in order to keep the volumetric heat transfer properties constant, according to the formula: wherein HG is the overall volumetric heat transfer coefficient in the pilot or production process; A B and C are constants; Dh is the hydraulic diameter of the channel in the pilot or production process; λw is the thermal conductivity of the wall in the pilot or production process; b is the empirically determined power to which the Reynolds number is raised in the equation for the Nusselt criteria (Nu=a−RebPrc) for the type of flow in the pilot or production process; h is the height of the channel in the pilot or production process; and HG0 is the overall volumetric heat transfer coefficient in the lab-scale process.
    • 公开了一种用于微反应器过程的无缝放大以将实验室测试转移到先导或生产单元的方法,该方法包括以下步骤:使用导热率低于3W / mK,并且使用导热率高于5W / mK的生产反应器的壁材料。 根据一个优选实施例,速度保持恒定,并且确定通道的高度,以便保持体积传热性能恒定,其中HG是飞行员中的总体积传热系数,或 生产过程; A B和C是常数; Dh是先导或生产过程中通道的液压直径; λw是先导或生产过程中墙壁的导热系数; b是在试点或生产过程中的流量类型的努塞尔标准(Nu = a-RebPrc)的方程中提高雷诺数的经验确定的功率; h是飞行员或生产过程中通道的高度; HG0是实验室规模过程中的总体积传热系数。
    • 90. 发明申请
    • Assembly of Flat on Structured Glass Layers
    • 结构玻璃层上的平面装配
    • US20120288417A1
    • 2012-11-15
    • US13522388
    • 2011-01-28
    • Antoine Gaston Denis BissonThierry Luc Alain DannouxAnne Paris
    • Antoine Gaston Denis BissonThierry Luc Alain DannouxAnne Paris
    • B01J19/00
    • B81C1/00119B01J19/0093B01J2219/00783B01J2219/00824B01J2219/00831B01J2219/0086B01J2219/00873B81B2201/058B81C2201/019
    • A microfluidic device (100) made from glass, ceramic or vitroceramic, comprises an upper layer (122), a lower layer (124) and an intermediate layer (114), the intermediate layer (114) comprising an upper face (114b) and a lower face (114a), the lower face (114a) comprising a first open structured surface defining a first microfluidic channel (126) and the upper face (114b) comprising a second open structured surface defining a second microfluidic channel (112); the lower surface of the intermediate layer (114) cooperating with a first planar layer closing the first microchannel (126); the upper face (114b) of the intermediate layer (114) cooperating with a second planar layer (130), closing the second microfluidic channel (112) in a sealed manner, and the second planar layer constituting an intermediate layer (130) which cooperates, on its face opposite the intermediate layer (114), with another layer (122) comprising on its inner face (122a) a structured surface defining a third microfluidic channel (128).
    • 由玻璃,陶瓷或陶瓷制成的微流体装置(100)包括上层(122),下层(124)和中间层(114),中间层(114)包括上表面(114b)和 下表面(114a),所述下表面(114a)包括限定第一微流体通道(126)的第一开放结构化表面,并且所述上表面(114b)包括限定第二微流体通道(112)的第二开放结构化表面; 中间层(114)的下表面与闭合第一微通道(126)的第一平面层协作; 所述中间层(114)的上表面(114b)与第二平面层(130)配合,密封地封闭所述第二微流体通道(112),所述第二平面层构成中间层(130),所述中间层 在其与中间层(114)相对的表面上,另一层(122)在其内表面(122a)上包括限定第三微流体通道(128)的结构化表面。