会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 42. 发明公开
    • Stacked capacitor SRAM cell
    • SRAM-Zelle mit geschichteterKapazität。
    • EP0499824A1
    • 1992-08-26
    • EP92101131.8
    • 1992-01-24
    • TEXAS INSTRUMENTS INCORPORATED
    • Rodder, Mark S.
    • G11C11/412
    • H01L27/1104G11C11/4125
    • This is an SRAM cell and the cell can comprise: two NMOS drive transistors, two PMOS load transistors; first and second bottom capacitor plates 50,52 , with the first plate 50 being over a gate 34 of one of the drive transistors and the second plate 52 being over a gate 40 of another of the drive transistors; a layer of dielectric material 68 over the first and second bottom capacitor plates; and first and second top capacitor plates 20,26 over the dielectric layer, with the first top capacitor 20 plate forming a gate of one of the load transistors and with the second top capacitor plate 26 forming a gate of another of the load transistors, whereby the capacitor plates form two cross-coupled capacitors between the gates of the drive transistors and the stability of the cell is enhanced. This is also a method of forming an SRAM cell.
    • 这是一个SRAM单元,单元可以包括:两个NMOS驱动晶体管,两个PMOS负载晶体管; 第一和第二底部电容器板50,52,其中第一板50在驱动晶体管之一的栅极34之上,而第二板52位于另一个驱动晶体管的栅极40之上; 位于第一和第二底部电容器板上的电介质材料层68; 以及介电层上的第一和第二顶部电容器板20,26,其中第一顶部电容器20板形成负载晶体管之一的栅极,并且与第二顶部电容器板26形成另一个负载晶体管的栅极,由此 电容器板在驱动晶体管的栅极之间形成两个交叉耦合的电容器,并且增强了电池的稳定性。 这也是形成SRAM单元的方法。
    • 43. 发明公开
    • Interconnection for an integrated circuit
    • 一体化电路互连
    • EP0490877A3
    • 1992-08-26
    • EP92102717.3
    • 1986-01-16
    • FAIRCHILD SEMICONDUCTOR CORPORATION
    • Vora, MadhukarBurton, GregKapoor, Ashok
    • H01L21/90H01L21/285
    • H01L21/8249H01L21/28518H01L21/76877H01L21/76885H01L21/76889H01L21/76895H01L23/485H01L23/528H01L23/53271H01L27/10805H01L27/1104H01L2924/0002H01L2924/00
    • An improved MOS transistor construction utilizes a polysilicon gate covered by silicide and silicide covered, self-aligned source and drain regions separated from the gate polysilicon by thin silicon dioxide spacers. No contact windows are formed within the perimeter of the isolation island. This allows for very small geometries. Electrical contact to the source and drain regions is provided by a conductive pattern formed in a layer of refractory metal which is in electrical contact with the source, drain and gate silicide and which extends over the field oxide to contact pad positions outside the isolation islands of the transistors. The contact pads located outside the isolation islands support post type vias or contact windows. The posts can be formed of different heights so that electrical contact by first and second metal layers to the source, gate and drain regions of the device can be made with the first and second metal layers separated by intermetal insulation. A process is disclosed for making high performance bipolar and high performance MOS devices on the same integrated circuit die which comprises forming isolation islands of epitaxial silicon surrounded by field oxide and forming MOS transistors having polysilicon gates in some islands and forming bipolar transistors having polysilicon emitters in other islands. Insulating spacers are then formed around the edges of the polysilicon electrodes by anisotropically etching a layer of insulation material. A layer of refractory metal is then deposited and heat treated at a temperature high enough to form silicide over the tops of the polysilicon electrodes and on top of the bases, sources and drains. Regions of this refractory metal are then masked off such that the electrical contact with the silicide is preserved and so that the refractory metal extends to a contact pad position external to the isolation island. Metal posts can be formed at the contact pad positions and a layer of planarized insulation material is formed so as to leave only the tops of the posts exposed. A layer of metal can then be deposited and etched to make electrical contact with tops of the posts. There is also disclosed a dynamic RAM cell using an MOS transistor and a CMOS static RAM cell comprising six MOS transistors having source, drain and gate electrodes which are smaller than the smallest contact window which can be made by the process which was used to make the transistor.
    • 44. 发明公开
    • SUBSTRATE STRUCTURE OF A SEMICONDUCTOR DEVICE
    • SUBSTRATSTRUKTUR FUR EINE HALBLEITERANORDNUNG。
    • EP0478793A1
    • 1992-04-08
    • EP91906985.6
    • 1991-04-12
    • KABUSHIKI KAISHA TOSHIBATOSHIBA MICRO-ELECTRONICS CORPORATION
    • FUJII, SyusoSHIMIZU, MitsuruSAKURAI, Kiyofumi
    • H01L27/04
    • H01L27/1104H01L27/0248
    • A semiconductor memory device which is prevented from malfunction if a negative external potential (vin) is applied to an input circuit such as an address buffer circuit or a data-in buffer circuit during a function test. A p-well region (16) is formed in an n-type semiconductor substrate (11). A potential (V BB ) lower than the external input potential (Vin) is applied to the p-well region (16). There are formed a first n-type impurity diffused layer (12) to which the external input potential (Vin) is applied, and a second n-type impurity diffused layer (13) to which a reference potential (Vref) is applied. The potential (V BB ) applied to the well region is lower than Vin. Therefore, when Vin is negative, minority carriers generated do not migrate into the well region having a high energy potential and do not move into the second diffused layer. Therefore, Vref does not change and the device does not erroneously operate.
    • 一种半导体存储器件,在功能测试期间,如果在诸如地址缓冲电路或数据输入缓冲电路之类的输入电路上施加负的外部电位(vin),则防止其发生故障。 p型阱区(16)形成在n型半导体衬底(11)中。 低于外部输入电位(Vin)的电位(VBB)被施加到p阱区域(16)。 形成施加外部输入电位(Vin)的第一n型杂质扩散层(12)和施加基准电位(Vref)的第二n型杂质扩散层(13)。 施加到阱区的电位(VBB)低于Vin。 因此,当Vin为负时,产生的少数载流子不迁移到具有高能势的阱区,并且不移入第二扩散层。 因此,Vref不变,器件不会错误地运行。
    • 47. 发明公开
    • Semicondutor memory device capable of relieving defective bits
    • Halbleiterspeicheranordnung,welche ein Herabsetzen der Anzahl mangelhafter Bits erlaubt。
    • EP0359204A2
    • 1990-03-21
    • EP89116872.6
    • 1989-09-12
    • KABUSHIKI KAISHA TOSHIBA
    • Segawa, Makoto c/o Intellectual Property Division
    • G06F11/20G11C5/14G11C11/41G11C11/412H01L27/11
    • G11C29/78G11C5/14G11C11/41G11C11/412G11C29/832H01L27/1104
    • A memory cell array includes static memory cells arranged in an array of n rows × m columns. Each of the memory cells includes MOS transistors formed in a semi­conductor substrate (11) and in a corresponding one of well regions (12-1, 12-2, ---, 12-n) of the conductivity type opposite to that of the semiconductor substrate (11). The well regions (12-1, 12-2, ---, 12-n) are independently formed for each row or for every two or more rows of the memory cell array. The well regions (12-1, 12-2, ---, 12-n) are connected to the respective sources of MOS transistors formed in the well regions (12-1, 12-2, ---, 12-n). The source and back-gate of each of the MOS transistors formed in the well regions (12-1, 12-2, ---, 12-n) are connected to the common source wirings (14-1, 14-2, ---, 14-n) for each of the independently formed well regions (12-1, 12-2, ---, 12-n). Isolation circuits are respectively connected between the common source wirings (14-1, 14-2, ---, 14-n) for the respective well regions (12-1, 12-2, ---, 12-n) and the power source. A row of the memory cell array to which a defective memory cell is connected is isolated from the power source by means of the isolation circuits.
    • 存储单元阵列包括排列成n行×m列的阵列的静态存储单元。 每个存储单元包括形成在半导体衬底(11)中的MOS晶体管,以及形成在导电类型相反的阱区(12-1,12-2,...,12-n)中的相应的一个阱区 半导体衬底(11)。 对于每行或每两行或多行存储单元阵列独立地形成阱区(12-1,12-2,...,12-n)。 阱区域(12-1,12-2,...,12-n)连接到形成在阱区域(12-1,12-2,...,12-n)中的各个MOS晶体管源 )。 形成在阱区域(12-1,12-2,...,12-n)中的每个MOS晶体管的源极和背栅极连接到公共源极配线(14-1,14-2, ---,14-n),每个独立形成的阱区域(12-1,12-2,...,12-n)。 隔离电路分别连接在各个阱区域(12-1,12-2,...,12-n)的公共源极配线(14-1,14-2,...,14-n)和 电源。 通过隔离电路将与缺陷存储单元连接的存储单元阵列的一行与电源隔离。