会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Shallow magnetic fields for generating circulating electrons to enhance
plasma processing
    • 用于产生循环电子的浅磁场以增强等离子体处理
    • US6022446A
    • 2000-02-08
    • US517178
    • 1995-08-21
    • Hongching ShanBryan PuJi DingMichael Welch
    • Hongching ShanBryan PuJi DingMichael Welch
    • H05H1/46C23F4/00H01J37/32H01L21/302H01L21/3065H01L21/00
    • H01J37/32082H01J37/32623H01J37/3266
    • The present invention is embodied in a plasma reactor for processing a workpiece such as a semiconductor wafer having an axis of symmetry, the reactor including a reactor chamber with a ceiling, a pedestal for supporting the workpiece within the chamber under the ceiling, a processing gas supply inlet into the chamber, an RF plasma power source coupled to the pedestal, and a magnetic field source near the ceiling providing a radially symmetrical magnetic field relative to the axis of symmetry within a portion of the chamber near the ceiling. The magnetic field source can include an electromagnet or plural magnets disposed over the ceiling in a radially symmetrical fashion with respect to the axis of symmetry. The plural magnets may be permanent magnets or electromagnets. The radially symmetrical magnetic field penetrates from the ceiling into the chamber to a shallow depth, and the height of the ceiling above the workpiece exceeds the depth.
    • 本发明体现在用于处理诸如具有对称轴的半导体晶片的工件的等离子体反应器中,该反应器包括具有天花板的反应室,用于将工件支撑在天花板下方的室内的处理气体 供应入室的入口,耦合到基座的RF等离子体电源以及靠近天花板的磁场源,在靠近天花板的腔室的一部分内相对于对称轴提供径向对称的磁场。 磁场源可以包括相对于对称轴线以径向对称的方式设置在天花板上方的电磁体或多个磁体。 多个磁体可以是永磁体或电磁体。 径向对称的磁场从天花板穿透入室至浅深度,工件上方天花板的高度超过深度。
    • 3. 发明授权
    • Method for etching dielectric layers with high selectivity and low
microloading
    • 高选择性和低负载下蚀刻电介质层的方法
    • US5843847A
    • 1998-12-01
    • US639388
    • 1996-04-29
    • Bryan PuHongching ShanMichael Welch
    • Bryan PuHongching ShanMichael Welch
    • H01L21/302H01L21/3065H01L21/311H01L21/00
    • H01L21/31116
    • A method of etching a dielectric layer on a substrate with high etching selectivity, low etch rate microloading, and high etch rates is described. In the method, the substrate is placed in a process zone, and a plasma is formed from process gas introduced into the process zone. The process gas comprises (i) fluorocarbon gas for etching the dielectric layer and for forming passivating deposits on the substrate, (ii) carbon-oxygen gas for enhancing formation of the passivating deposits, and (iii) nitrogen-containing gas for etching the passivating deposits on the substrate. The volumetric flow ratio of fluorocarbon:carbon-oxygen:nitrogen-containing gas is selected to provide a dielectric to resist etching selectivity ratio of at least about 10:1, an etch rate microloading of
    • 描述了以高蚀刻选择性,低刻蚀速率微载物和高蚀刻速率蚀刻衬底上的电介质层的方法。 在该方法中,将衬底放置在工艺区域中,并且将等离子体从引入工艺区域的工艺气体形成。 工艺气体包括(i)用于蚀刻介电层并用于在衬底上形成钝化沉积物的碳氟化合物气体,(ii)用于增强钝化沉积物形成的碳 - 氧气,和(iii)用于蚀刻钝化的含氮气体 沉积在基材上。 选择氟碳:碳 - 氧:含氮气体的体积流量比以提供电介质以抵抗至少约10:1的蚀刻选择率,<10%的蚀刻速率微载荷,以及在 至少约100nm / min。 优选地,选择氟碳:碳 - 氧:含氮气体的体积流量比,使得新蚀刻特征的侧壁上的钝化沉积物的形成速率近似等于钝化沉积物的去除速率。
    • 5. 发明授权
    • Method for etching dielectric using fluorohydrocarbon gas, NH.sub.3
-generating gas, and carbon-oxygen gas
    • 使用氟代烃气体,产生NH 3的气体和碳 - 氧气来蚀刻电介质的方法
    • US5814563A
    • 1998-09-29
    • US660966
    • 1996-06-12
    • Ji DingHongching ShanMichael Welch
    • Ji DingHongching ShanMichael Welch
    • H01L21/302H01L21/3065H01L21/311
    • H01L21/31116
    • A method of etching a dielectric layer (20) on a substrate (25) with high etching selectivity, low etch rate microloading, and high etch rates is described. In the method, a substrate (25) having a dielectric layer (20) with resist material thereon, is placed in a process zone (55), and a process gas is introduced into the process zone (55). The process gas comprises (i) fluorohydrocarbon gas for forming fluorine-containing etchant species capable of etching the dielectric layer (20), (ii) NH.sub.3 -generating gas having a liquefaction temperature L.sub.T in a range of temperatures .DELTA.T of from about -60.degree. C. to about 20.degree. C., and (iii) carbon-oxygen gas. The temperature of substrate (25) is maintained within about .+-.50.degree. C. of the liquefaction temperature L.sub.T of the NH.sub.3 -generating gas. A plasma is formed from the process gas to etch the dielectric layer (20) on the substrate (25). Preferably, the volumetric flow ratio of fluorohydrocarbon:NH.sub.3 -generating gas is from about 2.5:1 to about 7:1.
    • 描述了以高蚀刻选择性,低蚀刻速率微加载和高蚀刻速率蚀刻衬底(25)上的介电层(20)的方法。 在该方法中,将具有其上具有抗蚀材料的电介质层(20)的基板(25)放置在处理区(55)中,并且处理气体被引入到处理区(55)中。 工艺气体包括(i)用于形成能够蚀刻介电层(20)的含氟蚀刻剂物质的氟代烃气体,(ii)在约-60℃的温度范围T T下具有液化温度LT的NH 3产生气体 约20℃,(iii)碳 - 氧气。 衬底(25)的温度保持在产生NH 3的气体的液化温度LT的约+/- 50℃内。 从处理气体形成等离子体,以蚀刻衬底(25)上的介质层(20)。 优选地,氟代烃:产生NH 3的气体的体积流量比为约2.5:1至约7:1。
    • 8. 发明授权
    • Broad-band adjustable power ratio phase-inverting plasma reactor
    • 宽带可调功率比相位等效电抗器
    • US5865937A
    • 1999-02-02
    • US517177
    • 1995-08-21
    • Hongching ShanHiroji HanawaRobert WuMichael Welch
    • Hongching ShanHiroji HanawaRobert WuMichael Welch
    • H05H1/46C23F4/00H01J37/32H01L21/205H01L21/302H01L21/3065C23F1/08
    • H01J37/32174
    • In a plasma reactor including a vacuum chamber for containing at least a reactant gas at a selected pressure and a semiconductor wafer to be processed, a pair of electrodes for capacitively coupling radio frequency power into the chamber and a radio frequency source having a radio frequency power terminal, a circuit for coupling the radio frequency source to the pair of electrodes includes a coil having plural conductive windings and a pair of terminals bounding plural ones of the windings, the pair of terminals coupled to respective ones of the pair of electrodes, one of the windings connected to the power terminal of the radio frequency source, and a grounded conductive tap contacting the coil and slidable along the plural ones of the windings between the pair of terminals for varying a ratio of power apportioned between the pair of electrodes.
    • 在包括用于在选定压力下容纳至少一种反应气体的真空室和待处理的半导体晶片的等离子体反应器中,将用于将射频功率电容耦合到腔室中的一对电极和具有射频功率的射频源 端子,用于将射频源耦合到该对电极的电路包括具有多个导体绕组的线圈和限定多个绕组的一对端子,该对端子耦合到该对电极中的相应电极, 连接到射频源的电源端子的绕组以及与线圈接触的接地导线,并且可以沿着一对端子之间的多个绕组滑动,以改变在该对电极之间分配的功率比。
    • 9. 发明授权
    • High selectivity etch using an external plasma discharge
    • 使用外部等离子体放电的高选择性蚀刻
    • US06387288B1
    • 2002-05-14
    • US09556951
    • 2000-04-21
    • Claes BjorkmanHongching ShanMichael Welch
    • Claes BjorkmanHongching ShanMichael Welch
    • H01L21302
    • H01J37/32871
    • An apparatus and method for scavenging etchant species from a plasma formed of etchant gas prior to the etchant gas entering a primary processing chamber of a plasma reactor. There is at least one scavenging chamber, each of which is connected at an inlet thereof to an etchant gas source and at an outlet thereof to a gas distribution device of the primary processing chamber. Each scavenging chamber has a radiation applicator that irradiates the interior of the scavenging chamber and creates a plasma therein from etchant gas flowing through the chamber from the etchant gas source to the gas distribution apparatus of the primary processing chamber. The applicator uses either an inductive discharge, capacitive discharge, direct current (DC) discharge or microwave discharge to irradiate the interior of the scavenging chamber and ignite the plasma. An etchant species scavenging source is also disposed within the scavenging chamber. This source provides scavenging material that interacts with the plasma to scavenge etchant species created by the dissociation of the etchant gas in the plasma and form etch by-products comprised of substances from both the etchant species and the scavenging source. The scavenging chambers can be employed, as is or in a modified form, as excitation chambers to excite gases at optimal conditions and feed the modified gases into the primary chamber. The scavenging chamber is modified by removing its scavenging source if this source would adversely interact with the gas being excited.
    • 在蚀刻剂气体进入等离子体反应器的初级处理室之前,从蚀刻剂气体形成的等离子体中清除蚀刻剂物质的装置和方法。 至少有一个清除室,每个清除室在其入口处连接到蚀刻剂气体源,并在其出口连接到主处理室的气体分配装置。 每个清扫室具有辐射施加器,其辐射扫气室的内部,并从流化床中的蚀刻剂气体从蚀刻剂气体源到主处理室的气体分配装置产生等离子体。 施加器使用感应放电,电容放电,直流(DC)放电或微波放电来照射扫气室的内部并点燃等离子体。 清扫室内还设有一种蚀刻物质清除源。 该源提供与等离子体相互作用的清除材料,以清除由等离子体中的蚀刻剂气体解离产生的蚀刻剂物质,并形成由来自蚀刻剂物质和清除源的物质构成的蚀刻副产物。 清除室可以按原样或以改进形式用作激发室,以在最佳条件下激发气体并将改性气体进料到主室中。 如果该源与被激发的气体不利地相互作用,则通过去除其清除源来改进扫气室。
    • 10. 发明授权
    • High selectivity etch using an external plasma discharge
    • US6074514A
    • 2000-06-13
    • US20959
    • 1998-02-09
    • Claes BjorkmanHongching ShanMichael Welch
    • Claes BjorkmanHongching ShanMichael Welch
    • H05H1/46H01J37/32H01L21/302H01L21/3065C23F1/02
    • H01J37/32871
    • An apparatus and method for scavenging etchant species from a plasma formed of etchant gas prior to the etchant gas entering a primary processing chamber of a plasma reactor. There is at least one scavenging chamber, each of which is connected at an inlet thereof to an etchant gas source and at an outlet thereof to a gas distribution device of the primary processing chamber. Each scavenging chamber has a radiation applicator that irradiates the interior of the scavenging chamber and creates a plasma therein from etchant gas flowing through the chamber from the etchant gas source to the gas distribution apparatus of the primary processing chamber. The applicator uses either an inductive discharge, capacitive discharge, direct current (DC) discharge or microwave discharge to irradiate the interior of the scavenging chamber and ignite the plasma. An etchant species scavenging source is also disposed within the scavenging chamber. This source provides scavenging material that interacts with the plasma to scavenge etchant species created by the dissociation of the etchant gas in the plasma and form etch by-products comprised of substances from both the etchant species and the scavenging source. The scavenging chambers can be employed, as is or in a modified form, as excitation chambers to excite gases at optimal conditions and feed the modified gases into the primary chamber. The scavenging chamber is modified by removing its scavenging source if this source would adversely interact with the gas being excited.