会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Method for etching chemically inert metal oxides
    • 蚀刻化学惰性金属氧化物的方法
    • US07887711B2
    • 2011-02-15
    • US10170914
    • 2002-06-13
    • Douglas A. BuchananEduard A. CartierEvgeni GousevHarald Okorn-SchmidtKatherine L. Saenger
    • Douglas A. BuchananEduard A. CartierEvgeni GousevHarald Okorn-SchmidtKatherine L. Saenger
    • B44C1/22H01L21/00
    • H01L21/31122Y10S438/924
    • A system and method for patterning metal oxide materials in a semiconductor structure. The method comprises a first step of depositing a layer of metal oxide material over a substrate. Then, a patterned mask layer is formed over the metal oxide layer leaving one or more first regions of the metal oxide layer exposed. The exposed first regions of the metal oxide layer are then subjected to an energetic particle bombardment process to thereby damage the first regions of the metal oxide layer. The exposed and damaged first regions of the metal oxide layer are then removed by a chemical etch. Advantageously, the system and method is implemented to provide high-k dielectric materials in small-scale semiconductor devices. Besides using the ion implantation damage (I/I damage) plus wet etch technique to metal oxides (including metal oxides not previously etchable by wet methods), other damage methods including lower energy, plasma-based ion bombardment, may be implemented. Plasma-based ion bombardment typically uses simpler and cheaper tooling, and results in less collateral damage to underlying structures as the damage profile can be more easily localized to the depth of the thin metal oxide film.
    • 一种在半导体结构中图案化金属氧化物材料的系统和方法。 该方法包括在衬底上沉积金属氧化物材料层的第一步骤。 然后,在金属氧化物层之上形成图案化掩模层,留下暴露金属氧化物层的一个或多个第一区域。 接着对金属氧化物层的暴露的第一区域进行高能粒子轰击处理,从而破坏金属氧化物层的第一区域。 然后通过化学蚀刻去除金属氧化物层的暴露和损坏的第一区域。 有利地,该系统和方法被实现以在小规模半导体器件中提供高k电介质材料。 除了使用离子注入损伤(I / I损伤)以及湿法蚀刻技术对金属氧化物(包括以前不能用湿法蚀刻的金属氧化物)外,还可以实施包括较低能量,基于等离子体的离子轰击等其他损伤方法。 基于等离子体的离子轰击通常使用更简单和更便宜的工具,并且导致对下面的结构的较少的附带损伤,因为损伤分布可以更容易地定位于薄金属氧化物膜的深度。
    • 5. 发明授权
    • Process for passivating the semiconductor-dielectric interface of a MOS device and MOS device formed thereby
    • 钝化MOS器件的半导体介质接口和由此形成的MOS器件的工艺
    • US06803266B2
    • 2004-10-12
    • US10249184
    • 2003-03-20
    • Paul M. SolomonDouglas A. BuchananEduard A. CartierKathryn W. GuariniFenton R. McFeelyHuiling ShangJohn J. Yourkas
    • Paul M. SolomonDouglas A. BuchananEduard A. CartierKathryn W. GuariniFenton R. McFeelyHuiling ShangJohn J. Yourkas
    • H01L21336
    • H01L29/517H01L21/263H01L21/28079H01L29/495Y10S438/91
    • A process for passivating the semiconductor-dielectric interface of a MOS structure to reduce the interface state density to a very low level. A particular example is a MOSFET having a tungsten electrode that in the past has prevented passivation of the underlying semiconductor-dielectric interface to an extent sufficient to reduce the interface state density to less than 5×1010/cm2−eV. Though substantially impervious to molecular hydrogen, thin tungsten layers are shown to be pervious to atomic hydrogen, enabling atomic hydrogen to be diffused through a tungsten electrode into an underlying semiconductor-dielectric interface. Three general approaches are encompassed: forming an aluminum-tungsten electrode stack in the presence of hydrogen so as to store atomic hydrogen between the tungsten and aluminum layers, followed by an anneal to cause the atomic hydrogen to diffuse through the tungsten layer and into the interface; subjecting a tungsten electrode to hydrogen plasma, during which atomic hydrogen diffuses through the electrode and into the semiconductor-dielectric interface; and implanting atomic hydrogen into tungsten electrode, followed by an anneal to cause the atomic hydrogen to diffuse through the electrode and into the semiconductor-dielectric interface.
    • 一种用于钝化MOS结构的半导体 - 电介质界面以将界面态密度降低到非常低的水平的方法。 具体的示例是具有钨电极的MOSFET,其过去已经阻止下面的半导体 - 电介质界面的钝化达到足以将界面态密度降低到小于5×10 10 / cm 2 -eV的程度。 虽然基本上不透分子氢,但是显示出薄钨层可以透过原子氢,使原子氢能够通过钨电极扩散到下面的半导体 - 电介质界面。 包括三种一般方法:在氢的存在下形成铝 - 钨电极堆叠,以便在钨和铝层之间存储原子氢,随后进行退火,使原子氢扩散通过钨层并进入界面 ; 使钨电极经受氢等离子体,其中原子氢通过电极扩散并进入半导体 - 电介质界面; 并将原子氢注入钨电极中,随后进行退火,使原子氢扩散通过电极并进入半导体 - 电介质界面。