会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Process for passivating the semiconductor-dielectric interface of a MOS device and MOS device formed thereby
    • 钝化MOS器件的半导体介质接口和由此形成的MOS器件的工艺
    • US06803266B2
    • 2004-10-12
    • US10249184
    • 2003-03-20
    • Paul M. SolomonDouglas A. BuchananEduard A. CartierKathryn W. GuariniFenton R. McFeelyHuiling ShangJohn J. Yourkas
    • Paul M. SolomonDouglas A. BuchananEduard A. CartierKathryn W. GuariniFenton R. McFeelyHuiling ShangJohn J. Yourkas
    • H01L21336
    • H01L29/517H01L21/263H01L21/28079H01L29/495Y10S438/91
    • A process for passivating the semiconductor-dielectric interface of a MOS structure to reduce the interface state density to a very low level. A particular example is a MOSFET having a tungsten electrode that in the past has prevented passivation of the underlying semiconductor-dielectric interface to an extent sufficient to reduce the interface state density to less than 5×1010/cm2−eV. Though substantially impervious to molecular hydrogen, thin tungsten layers are shown to be pervious to atomic hydrogen, enabling atomic hydrogen to be diffused through a tungsten electrode into an underlying semiconductor-dielectric interface. Three general approaches are encompassed: forming an aluminum-tungsten electrode stack in the presence of hydrogen so as to store atomic hydrogen between the tungsten and aluminum layers, followed by an anneal to cause the atomic hydrogen to diffuse through the tungsten layer and into the interface; subjecting a tungsten electrode to hydrogen plasma, during which atomic hydrogen diffuses through the electrode and into the semiconductor-dielectric interface; and implanting atomic hydrogen into tungsten electrode, followed by an anneal to cause the atomic hydrogen to diffuse through the electrode and into the semiconductor-dielectric interface.
    • 一种用于钝化MOS结构的半导体 - 电介质界面以将界面态密度降低到非常低的水平的方法。 具体的示例是具有钨电极的MOSFET,其过去已经阻止下面的半导体 - 电介质界面的钝化达到足以将界面态密度降低到小于5×10 10 / cm 2 -eV的程度。 虽然基本上不透分子氢,但是显示出薄钨层可以透过原子氢,使原子氢能够通过钨电极扩散到下面的半导体 - 电介质界面。 包括三种一般方法:在氢的存在下形成铝 - 钨电极堆叠,以便在钨和铝层之间存储原子氢,随后进行退火,使原子氢扩散通过钨层并进入界面 ; 使钨电极经受氢等离子体,其中原子氢通过电极扩散并进入半导体 - 电介质界面; 并将原子氢注入钨电极中,随后进行退火,使原子氢扩散通过电极并进入半导体 - 电介质界面。
    • 7. 发明授权
    • Process options of forming silicided metal gates for advanced CMOS devices
    • 为先进的CMOS器件形成硅化金属栅的工艺选择
    • US07326610B2
    • 2008-02-05
    • US11271032
    • 2005-11-10
    • Ricky S. AmosDouglas A. BuchananCyril Cabral, Jr.Evgeni P. GousevVictor KuAn Steegen
    • Ricky S. AmosDouglas A. BuchananCyril Cabral, Jr.Evgeni P. GousevVictor KuAn Steegen
    • H01L21/31
    • H01L21/823842H01L21/76895H01L21/823835
    • Silicide is introduced into the gate region of a CMOS device through different process options for both conventional and replacement gate types processes. Placement of silicide in the gate itself, introduction of the silicide directly in contact with the gate dielectric, introduction of the silicide as a fill on top of a metal gate all ready in place, and introduction the silicide as a capping layer on polysilicon or on the existing metal gate, are presented. Silicide is used as an option to connect between PFET and NFET devices of a CMOS structure. The processes protect the metal gate while allowing for the source and drain silicide to be of a different silicide than the gate silicide. A semiconducting substrate is provided having a gate with a source and a drain region. A gate dielectric layer is deposited on the substrate, along with a metal gate layer. The metal gate layer is then capped with a silicide formed on top of the gate, and conventional formation of the device then proceeds. A second silicide may be employed within the gate. A replacement gate is made from two different metals (dual metal gate replacement) prior to capping with a silicide.
    • 硅化物通过不同的工艺选择被引入到CMOS器件的栅极区域,用于常规和替代栅极类型工艺。 将硅化物放置在栅极本身中,引入硅化物直接与栅极电介质接触,将硅化物作为填充物引入金属栅极顶部,并准备就绪,并将硅化物作为覆盖层引入到多晶硅上或 现有的金属门。 硅化物用作连接CMOS结构的PFET和NFET器件的选项。 该过程保护金属栅极,同时允许源极和漏极硅化物与栅极硅化物不同的硅化物。 提供了具有栅极和源极和漏极区域的半导体衬底。 栅极电介质层与金属栅极层一起沉积在衬底上。 然后用形成在栅极顶部上的硅化物对金属栅极层进行封装,然后继续进行常规的器件形成。 可以在栅极内使用第二硅化物。 在使用硅化物封盖之前,更换栅极由两种不同的金属(双金属栅极替代)制成。
    • 8. 发明授权
    • Process options of forming silicided metal gates for advanced CMOS devices
    • 为先进的CMOS器件形成硅化金属栅的工艺选择
    • US07029966B2
    • 2006-04-18
    • US10605261
    • 2003-09-18
    • Ricky S. AmosDouglas A. BuchananCyril Cabral, Jr.Evgeni P. GousevVictor KuAn Steegen
    • Ricky S. AmosDouglas A. BuchananCyril Cabral, Jr.Evgeni P. GousevVictor KuAn Steegen
    • H01L21/8238H01L21/3205H01L21/4763
    • H01L21/823842H01L21/76895H01L21/823835
    • Silicide is introduced into the gate region of a CMOS device through different process options for both conventional and replacement gate types processes. Placement of silicide in the gate itself, introduction of the silicide directly in contact with the gate dielectric, introduction of the silicide as a fill on top of a metal gate all ready in place, and introduction the silicide as a capping layer on polysilicon or on the existing metal gate, are presented. Silicide is used as an option to connect between PFET and NFET devices of a CMOS structure. The processes protect the metal gate while allowing for the source and drain silicide to be of a different silicide than the gate silicide. A semiconducting substrate is provided having a gate with a source and a drain region. A gate dielectric layer is deposited on the substrate, along with a metal gate layer. The metal gate layer is then capped with a silicide formed on top of the gate, and conventional formation of the device then proceeds. A second silicide may be employed within the gate. A replacement gate is made from two different metals (dual metal gate replacement) prior to capping with a silicide.
    • 硅化物通过不同的工艺选择被引入到CMOS器件的栅极区域,用于常规和替代栅极类型工艺。 将硅化物放置在栅极本身中,引入硅化物直接与栅极电介质接触,将硅化物作为填充物引入金属栅极顶部,并准备就绪,并将硅化物作为覆盖层引入到多晶硅上或 现有的金属门。 硅化物用作连接CMOS结构的PFET和NFET器件的选项。 该过程保护金属栅极,同时允许源极和漏极硅化物与栅极硅化物不同的硅化物。 提供了具有栅极和源极和漏极区域的半导体衬底。 栅极电介质层与金属栅极层一起沉积在衬底上。 然后用形成在栅极顶部上的硅化物对金属栅极层进行封装,然后继续进行常规的器件形成。 可以在栅极内使用第二硅化物。 在使用硅化物封盖之前,更换栅极由两种不同的金属(双金属栅极替代)制成。