会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • OPTICALLY GUIDED MACROSCOPIC-SCAN-RANGE/NANOMETER RESOLUTION PROBING SYSTEM
    • 光学引导光栅扫描范围/纳米光束分辨率探测系统
    • WO1994025888A1
    • 1994-11-10
    • PCT/US1994004624
    • 1994-04-26
    • BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    • BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEMMARCHMAN, HerschelWETSEL, Grover, C.
    • G02B21/00
    • G01Q60/22Y10S977/868
    • A large-nanostructure probe with optically guided macroscopic scanning is disclosed for high-resolution imaging and characterization of nanostructures. The invention contemplates the use of a coarse positioning system, which comprises one or more quadratic index fiber optic lenses (11) in conjunction with an optical microscope (12). A magnifying probe (37) is placed in close proximity to a sample under inspection. The fiber optic lenses (11) of the coarse positoning system are used to noninvasively carry the image of a sample-to-probe junction to the optical microscope (12). The optical microscope further magnifies the image, allowing for precise positioning of the probe tip to within 1 mu m of a desired feature on the sample surface. For ease to viewing, the magnified image from the microscope may be displayed on a monitor using a charge coupled device ("CCD") camera (13), if so desired. Also disclosed is a long-range probing system wherein the probe tip may be one of a variety of measurement or probing apparatus. For example, a particularly effective configuration of the long-range probing system is one in which the optical viewing system of the present invention serves as part of a coarse approach system for a scanning tunneling microscope probe.
    • 公开了具有光学引导的宏观扫描的大型纳米结构探针用于纳米结构的高分辨率成像和表征。 本发明考虑使用粗定位系统,其包括与光学显微镜(12)结合的一个或多个二次折射率光纤透镜(11)。 放大探头(37)放置在靠近被检样品的位置。 粗定位系统的光纤透镜(11)被用来将样品 - 探针结的图像无侵入地携带到光学显微镜(12)。 光学显微镜进一步放大图像,允许将探针尖端精确定位在样品表面上所需特征的1微米以内。 为了便于查看,如果需要,可以使用电荷耦合器件(“CCD”)相机(13)将显微镜的放大图像显示在监视器上。 还公开了一种远程探测系统,其中探针尖端可以是各种测量或探测装置之一。 例如,长距离探测系统的特别有效的构造是其中本发明的光学观察系统用作扫描隧道显微镜探针的粗略方法系统的一部分。
    • 4. 发明申请
    • FLUORESCENT NANOSCOPY METHOD
    • 荧光纳米科技
    • WO2006123967A2
    • 2006-11-23
    • PCT/RU2006000231
    • 2006-05-05
    • KLIMOV ANDREY ALEXEEVICHKLIMOV DMITRY ANDREEVICHKLIMOV EVGENIY ANDREEVICHKLIMOVA TATIANA VITALYEVNA
    • KLIMOV ANDREY ALEXEEVICHKLIMOV DMITRY ANDREEVICHKLIMOV EVGENIY ANDREEVICHKLIMOVA TATIANA VITALYEVNA
    • G01N21/6428G01N21/6458G01N21/6486H04N7/18H04N13/0275Y10S977/84Y10S977/868Y10S977/869Y10S977/881Y10T436/143333Y10T436/25
    • The invention relates to analysis of object dyed with fluorescent colouring agents carried out with the aid of a fluorescent microscope which is modified in terms of improved resolving power and called a nanoscope thereafter. The inventive method is carried out with the aid of a microscope comprising an optical system for visualising and projecting a sample image to a video camera which records and digitises images of individual fluorescence molecules and nanoparticles at a low noise, a computer for recording and processing images, a sample holder arranged in front of an object lens, a fluorescent radiation exciting source and a set of replaceable suppression filter for separating the sample fluorescent light. The invention is characterised in that the separately fluorescing visible molecules and nanoparticles are periodically formed in different object parts, the laser produces the oscillation thereof which is sufficient for recording the non-overlapping images of said molecules and nanoparticles and for decolouring already recorded fluorescent molecules, wherein tens of thousands of pictures of recorded individual molecule and nanoparticle images (in the form of stains whose diameter is of the order of a fluorescent light wavelength multiplied by a microscope amplification) are processed by a computer for searching the co-ordinates of the stain centres and building the object image according to millions of calculated stain center co-ordinates corresponding to the co-ordinates of the individual fluorescent molecules and nanoparticles. Said invention makes it possible to obtain a two- and three-dimensional image with a resoling power better than 20 nm and to record a colour image by dyeing proteins, nucleic acids and lipids with different colouring agents.
    • 本发明涉及使用荧光显色剂进行荧光着色剂染色的物体的分析,所述荧光显微镜在分辨能力提高方面被修改,此后称为纳米镜。 本发明的方法借助于包括用于将样本图像可视化并投影到以低噪声记录和数字化各个荧光分子和纳米颗粒的图像的摄像机的光学系统的显微镜进行,用于记录和处理图像的计算机 ,配置在物镜前面的样品架,荧光放射线激励源和用于分离样品荧光的一组可更换抑制滤光片。 本发明的特征在于,在不同的对象部分中周期性地形成分开的荧光可见分子和纳米颗粒,激光产生其足以记录所述分子和纳米颗粒的非重叠图像并且用于脱色已经记录的荧光分子的振荡, 其中记录的单个分子和纳米颗粒图像(其直径为荧光波长乘以显微镜放大的污渍的形式)的数万张照片由计算机处理,用于搜索染色体的坐标 根据与各个荧光分子和纳米颗粒的坐标相对应的数百万计算的染色中心坐标来建立对象图像。 本发明使得可以获得具有优于20nm的分辨率的二维和三维图像,并通过用不同着色剂对蛋白质,核酸和脂质进行染色来记录彩色图像。
    • 7. 发明申请
    • METHOD AND APPARATUS FOR SPECIFIC SPECTROSCOPIC ATOMIC IMAGING USING COMPLEMENTARY WAVELENGTH SPECIFIC PHOTON BIASING WITH ELECTRONIC AND TEMPERATURE BIASING ON A SCANNING TUNNELING MICROSCOPE
    • 在扫描隧道显微镜上使用电子和温度偏移的补充波长特定光子偏转的特定光谱原子成像的方法和装置
    • WO1990010304A1
    • 1990-09-07
    • PCT/US1990000098
    • 1990-01-08
    • MIDWEST RESEARCH INSTITUTEKAZMERSKI, Lawrence, L.
    • MIDWEST RESEARCH INSTITUTE
    • H01J37/285
    • G01Q60/12G01Q30/02G01Q30/10Y10S977/852Y10S977/861Y10S977/868
    • A method and apparatus (10) for specific spectroscopic atomic-imaging is disclosed for spatial resolution and imaging for display not only individual atoms on a sample (5) surface, but also bonding and the specific atomic species in such bond. The apparatus (10) includes a scanning tunneling microscope (STM) that is modified to include photon biasing, preferably a tuneable laser (54), modulating electronic surface biasing for the sample (5), and temperature biasing, preferably a vibration-free refrigerated sample mounting stage (12). Computer control (100) and data processing and visual display components (102) are also included. The method includes modulating the electronic bias voltage with and without selected photon wavelengths and frequency biasing under a stabilizing (usually cold) bias temperature to detect bonding and specific atomic species in the bonds as the STM rasters the sample (5). This data is processed along with atomic spatial topography data obtained from the STM raster scan to create a real-time visual image of the atoms on the sample (5) surface.
    • 公开了用于特定光谱原子成像的方法和装置(10)用于空间分辨率和成像,用于不仅显示样品(5)表面上的单个原子,而且还可以键合和这种键中的特定原子物质。 该装置(10)包括扫描隧道显微镜(STM),其被修改为包括光子偏置,优选可调谐激光器(54),调制用于样品(5)的电子表面偏置,以及温度偏置,优选无振动的冷冻 样品安装台(12)。 还包括计算机控制(100)和数据处理和视觉显示组件(102)。 该方法包括在稳定(通常为冷)偏压温度下调制具有和不具有所选择的光子波长和频率偏置的电子偏置电压,以在STM栅极对样品(5)进行栅格扫描时检测键中的键合和特定原子物质。 将该数据与从STM光栅扫描获得的原子空间地形数据一起处理,以创建样品(5)表面上的原子的实时视觉图像。
    • 8. 发明申请
    • VERFAHREN UND VORRICHTUNG ZUM MESSEN EINER PROBE MIT HILFE EINES RASTERSONDENMIKROSKOPS
    • 方法和装置用于测量样品用扫描型探针显微镜
    • WO2003028038A2
    • 2003-04-03
    • PCT/DE2002/003690
    • 2002-09-24
    • JPK INSTRUMENTS AGKAMPS, Jörn
    • KAMPS, Jörn
    • G12B21/08
    • G01Q20/02Y10S977/868
    • Die Erfindung bezieht sich auf ein Verfahren und eine Vorrichtung zum Messen einer Messprobe mit Hilfe eines Rastersondenmikroskops, insbesondere eines Rasterkraftmikroskops, bei dem zum Messen einer Messprobe (6) eine Messsonde (5) mit Hilfe einer lateralen und einer vertikalen Verlagerungseinheit (1) relativ zu der Messprobe (6) verlagert wird; Messlichtstrahlen (21) mit Hilfe einer Lichtquelle (20) erzeugt und auf eine an der Messsonde angeordnete Reflexionseinrichtung (91) gelenkt werden; die Messlichtstrahlen (21) an der Reflexionseinrichtung (91) reflektiert werden, so dass reflektierte Messlichtstrahlen (21a) gebildet werden; und die reflektierten Messlichtstrahlen (21a) zum Erzeugen eines Messsignals mit Hilfe einer Korrekturlinse (47) auf eine Empfängerfläche (32) einer Empfängeeinrichtung (27) gelenkt werden, wobei die Korrekturlinse (47) in einem Abstand, welcher im wesentlichen gleich einer Fokuslänge der Korrekturlinse (47) ist, von der Empfängerfläche (32) angeordnet ist.
    • 本发明涉及一种方法和一种使用扫描探针显微镜,尤其是扫描力显微镜,测定测量样品的装置,其特征在于,用于测量测量样品(6),测量探头(5)通过横向和垂直位移单元的装置(1)相 测量样品(6)的位移; 测量光线由光源(20)的装置产生(21)并引导到布置在所述反射装置(91)的测量探头; 测量的光线(21)反射的反射装置(91),使得反射光线(21A)形成测量; 和反射的测量光线(21A),用于通过校正透镜(47)的装置产生一测量信号的接收表面(32)的接收装置(27)被引导,所述的一个距离,该距离基本上等于所述校正透镜的焦距校正透镜(47) (47),从接收器表面(32)被布置。