会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • DOUBLE STAGE CHARGED PARTICLE BEAM ENERGY WIDTH REDUCTION SYSTEM FOR CHARGED PARTICLE BEAM SYSTEM
    • 带电粒子束系统的双级带电粒子束能量宽度减小系统
    • WO2005024888A3
    • 2005-04-28
    • PCT/EP2004009801
    • 2004-09-02
    • INTEGRATED CIRCUIT TESTINGFROSIEN JUERGENDEGENHARDT RALFLANIO STEFAN
    • FROSIEN JUERGENDEGENHARDT RALFLANIO STEFAN
    • H01J37/05H01J37/153H01J37/28H01J49/28H01J49/46H01J49/48
    • H01J37/26B82Y10/00B82Y40/00H01J37/05H01J37/153H01J37/3174H01J2237/057H01J2237/1534H01J2237/1538
    • The present invention relates to e.g. a charged particle beam energy width reduction system for a charged particle beam with a z-axis along the optical axis and a first and a second plane, comprising, a first element (110) acting in a focusing and dispersive manner, a second element (112) acting in a focusing and dispersive manner, a first quadrupole element (410) being positioned such that, in operation, a field of the first quadrupole element overlaps with a field of the first element acting in a focusing and dispersive manner, a second quadrupole element (412) being positioned such that, in operation, a field of the second quadrupole element overlaps with a field of the second element acting in a focusing and dispersive manner, a first charged particle selection element (618) being positioned, in beam direction, before the first element acting in a focusing and dispersive manner, and a second charged particle selection element (616;716) being positioned, in beam direction, after the first element acting in a focusing and dispersive manner. Thereby, a virtually dispersive source-like location without an inherent dispersion limitation can be realized.
    • 本发明涉及例如 具有沿着光轴的z轴以及第一和第二平面的带电粒子束的带电粒子束能量宽度减小系统,包括:以聚焦和色散方式作用的第一元件(110),第二元件( 112)以聚焦和散射方式作用,第一四极元件(410)被定位成使得在操作中第一四极元件的场与第一元件的聚焦和散射方式的场重叠,第二 四极元件(412)被定位成使得在操作中,第二四极元件的场与以聚焦和色散方式作用的第二元件的场重叠,第一带电粒子选择元件(618)以束 在第一元件以聚焦和色散方式作用之前,以及第二带电粒子选择元件(616; 716)在光束方向上定位在第一元件作用于聚焦和分散方式之后 d分散的方式。 由此,可以实现没有固有色散限制的虚拟色散源位置。
    • 5. 发明申请
    • ION IMPLANTATION WITH DIMINISHED SCANNING FIELD EFFECTS
    • 离子植入与微量扫描场效应
    • WO2010080097A1
    • 2010-07-15
    • PCT/US2009/006481
    • 2009-12-10
    • AXCELIS TECHNOLOGIES, INC.EISNER, Edward
    • EISNER, Edward
    • H01J37/317
    • H01J37/3171H01J2237/1538H01J2237/24542H01J2237/30472
    • Ion implantation systems (110) and scanning systems are provided, in which a focus adjustment component (135) is provided to adjust a focal property of an ion beam (124) to diminish zero field effects of the scanner (136) upon the ion beam. The focal property may be adjusted in order to improve the consistency of the beam profile scanned across the workpiece (130), or to improve the consistency of the ion implantation across the workpiece (130). Methods are disclosed for providing a scanned ion beam to a workpiece, comprising scanning the ion beam to produce a scanned ion beam, adjusting a focal property of an ion beam in relation to zero field effects of the scanner upon the ion beam, and directing the ion beam toward the workpiece.
    • 提供离子注入系统(110)和扫描系统,其中提供聚焦调节部件(135)以调节离子束(124)的聚焦特性,以减少扫描仪(136)对离子束的零场效应 。 可以调整焦点特性以便改善在工件(130)上扫描的光束轮廓的一致性,或者提高穿过工件(130)的离子注入的一致性。 公开了用于向工件提供扫描离子束的方法,包括扫描离子束以产生扫描离子束,相对于扫描仪对离子束的零场效应调整离子束的聚焦特性,并引导 离子束朝向工件。
    • 6. 发明申请
    • イオン注入装置およびイオンビームの偏差角補正方法
    • 离子植入装置和离子束偏转角校正方法
    • WO2008001685A1
    • 2008-01-03
    • PCT/JP2007/062578
    • 2007-06-22
    • 日新イオン機器株式会社山下 貴敏
    • 山下 貴敏
    • H01J37/317H01J37/12H01L21/265
    • H01J37/3171H01J2237/14H01J2237/1538H01J2237/24528
    • An ion implantation apparatus in which the divergence in the Y-direction due to the space charge effect of the ion beam is compensated between the target and the ion beam deflector where the ion beam is separated from neutral particles and thereby the ion beam transportation efficiency is enhanced. The ion implantation apparatus comprises a beam parallizer (14) for converting an ion beam (4) scanned in the X-direction is bent back into a parallel ion beam by a magnetic field and outputting an ion beam (4) having a ribbon shape. The beam parallizer (14) also serves as an ion beam deflector for separating the ion beam (4) and neutral particles by the deflection of the ion beam (4) by the magnetic filed. Near the exit of the beam parallizer (14), electrodes are so disposed as to be opposed to each other in the Y-direction, with the space where the ion beam (4) passes interposed. Thus, an electrostatic lens (30) for converging the ion beam (4) in the Y-direction is provided.
    • 一种离子注入装置,其中由于离子束的空间电荷效应而在Y方向上的发散被补偿在靶和离子束偏转器之间,其中离子束与中性粒子分离,从而离子束输送效率为 增强。 离子注入装置包括用于将在X方向上扫描的离子束(4)转换成通过磁场返回到并联离子束的光束偏光器(14),并输出具有带状的离子束(4)。 光束偏光器(14)还用作离子束偏转器,用于通过磁场使离子束(4)的偏转来分离离子束(4)和中性粒子。 在光束偏光器(14)的出口附近,电极被设置为在Y方向上彼此相对,并且离子束(4)通过的空间被插入。 因此,设置用​​于使离子束(4)沿Y方向会聚的静电透镜(30)。
    • 7. 发明申请
    • 写像型電子顕微鏡、電子顕微鏡、試料面観察方法及びマイクロデバイスの製造方法
    • 投影电子显微镜,电子显微镜,样品表面观察方法和微型器件生产方法
    • WO2005069346A1
    • 2005-07-28
    • PCT/JP2005/000625
    • 2005-01-13
    • 株式会社ニコン株式会社荏原製作所兼松 えりか
    • 兼松 えりか
    • H01J37/29
    • H01J37/29H01J37/045H01J37/153H01J2237/1538H01J2237/24592
    • An irradiating beam (4) emitted from a cathode (1) enters a deflector (3). The optical path of the irradiating beam (4) is changed by the deflector (3) when a voltage is applied to the deflector (3), and the irradiating beam (4) passes through a common electron optical system (7) and irradiates the surface of a specimen (6). The irradiating beam (4) passes straight through the deflector (3) when no voltage is applied to the deflector (3) and is absorbed by an electron absorbing plate (17). While passing through the common electron optical system (7), the irradiating beam (4) is decelerated, and the energy is decreased to about 0 [eV] when the irradiating beam (4) reaches the surface of the specimen (6). When the irradiating beam (4) strikes the specimen (6), reflection electrons (8) are produced from the specimen (6). The reflection electrons (8) pass through the common electron optical system (7) and through an imaging electron optical system (9) when no voltage is applied to the deflector (3), and is projected onto an MCP detector (10).
    • 从阴极(1)发射的照射光束(4)进入导流板(3)。 当向偏转器(3)施加电压时,照射光束(4)的光路由偏转器(3)改变,并且照射光束(4)通过公共电子光学系统(7)并照射 试样(6)的表面。 当没有电压施加到偏转器(3)并被电子吸收板(17)吸收时,照射光束(4)直接通过偏转器(3)。 当通过公共电子光学系统(7)时,照射光束(4)减速,当照射光束(4)到达样本(6)的表面时,能量减小到约0 [eV]。 当照射光束(4)撞击样品(6)时,从样品(6)产生反射电子(8)。 当没有电压施加到偏转器(3)时,反射电子(8)通过公共电子光学系统(7)并通过成像电子光学系统(9),并且被投影到MCP检测器(10)上。
    • 8. 发明申请
    • DOUBLE STAGE CHARGED PARTICLE BEAM ENERGY WIDTH REDUCTION SYSTEM FOR CHARGED PARTICLE BEAM SYSTEM
    • 双级充电粒子束能量减少系统用于充电粒子束系统
    • WO2005024888A2
    • 2005-03-17
    • PCT/EP2004/009801
    • 2004-09-02
    • ICT INTEGRATED CIRCUIT TESTING GESELLSCHAFT FÜR HALBLEITERPRÜFTECHNIK MBHFROSIEN, JürgenDEGENHARDT, RalfLANIO, Stefan
    • FROSIEN, JürgenDEGENHARDT, RalfLANIO, Stefan
    • H01J37/00
    • H01J37/26B82Y10/00B82Y40/00H01J37/05H01J37/153H01J37/3174H01J2237/057H01J2237/1534H01J2237/1538
    • The present invention relates to e.g. a charged particle beam energy width reduction system for a charged particle beam with a z-axis along the optical axis and a first and a second plane, comprising, a first element (110) acting in a focusing and dispersive manner, a second element (112) acting in a focusing and dispersive manner, a first quadrupole element (410) being positioned such that, in operation, a field of the first quadrupole element overlaps with a field of the first element acting in a focusing and dispersive manner, a second quadrupole element (412) being positioned such that, in operation, a field of the second quadrupole element overlaps with a field of the second element acting in a focusing and dispersive manner, a first charged particle selection element (618) being positioned, in beam direction, before the first element acting in a focusing and dispersive manner, and a second charged particle selection element (616;716) being positioned, in beam direction, after the first element acting in a focusing and dispersive manner. Thereby, a virtually dispersive source-like location without an inherent dispersion limitation can be realized.
    • 本发明涉及例如 用于沿着光轴具有z轴的带电粒子束的带电粒子束能量宽度减小系统以及包括以聚焦和分散方式起作用的第一元件(110)的第一和第二平面,第二元件( 112),第一四极元件(410)被定位成使得在操作中,第一四极元件的场与以聚焦和分散方式作用的第一元件的场重叠,第二四极元件 四极元件(412)被定位成使得在操作中,第二四极元件的场与以聚焦和分散方式作用的第二元件的场重叠,第一带电粒子选择元件(618)被定位成束 方向,在第一元件以聚焦和分散方式作用之前,第二带电粒子选择元件(616; 716)在光束方向上位于第一元件作用于聚焦 分散的方式。 因此,可以实现没有固有分散限制的虚拟色散源状位置。