会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • SPECTRAL REFLECTOMETRY FOR IN-SITU PROCESS MONITORING AND CONTROL
    • 用于原地过程监测和控制的光谱反射测量
    • WO2018044904A1
    • 2018-03-08
    • PCT/US2017/049138
    • 2017-08-29
    • KLA-TENCOR CORPORATION
    • JAIN, PrateekWACK, DanielPETERLINZ, KevinSHCHEGROV, AndreiKRISHNAN, Shankar
    • G01N21/95G01N21/55G01N21/25G01N21/88G01N21/956
    • Methods and systems for performing in-situ, selective spectral reflectometry (SSR) measurements of semiconductor structures disposed on a wafer are presented herein. Illumination light reflected from a wafer surface is spatially imaged. Signals from selected regions of the image are collected and spectrally analyzed, while other portions of the image are discarded. In some embodiments, a SSR includes a dynamic mirror array (DMA) disposed in the optical path at or near a field plane conjugate to the surface of the semiconductor wafer under measurement. The DMA selectively blocks the undesired portion of wafer image. In other embodiments, a SSR includes a hyperspectral imaging system including a plurality of spectrometers each configured to collect light from a spatially distinct area of a field image conjugate to the wafer surface. Selected spectral signals associated with desired regions of the wafer image are selected for analysis.
    • 本文给出了用于执行设置在晶片上的半导体结构的原位选择性光谱反射(SSR)测量的方法和系统。 从晶片表面反射的照明光在空间上成像。 收集来自图像的选定区域的信号并对其进行光谱分析,而丢弃图像的其他部分。 在一些实施例中,SSR包括设置在光路中的位于或接近与被测量的半导体晶片的表面共轭的场平面处的动态镜阵列(DMA)。 DMA选择性地阻挡晶片图像的不需要的部分。 在其他实施例中,SSR包括高光谱成像系统,该高光谱成像系统包括多个光谱仪,每个光谱仪被配置为收集来自与晶片表面共轭的场图像的空间不同区域的光。 选择与晶片图像的期望区域相关联的选定光谱信号用于分析。
    • 3. 发明申请
    • APPARATUS AND METHOD OF MEASURING ROUGHNESS AND OTHER PARAMETERS OF A STRUCTURE
    • 测量粗糙度和其他结构参数的装置和方法
    • WO2013109707A1
    • 2013-07-25
    • PCT/US2013/021866
    • 2013-01-17
    • KLA-TENCOR CORPORATION
    • SHCHEGROV, AndreiBRADY, GregoryPETERLINZ, Kevin
    • G01B11/30
    • G01B9/02G01B11/24G01B2210/56
    • Systems and methods are presented to enhance and isolate residual signals indicative of the speckle field based on measurements taken by optically based metrology systems. Structural irregularities such as roughness and topographical errors give rise to light scattered outside of the specularly reflected component of the diffracted light. The scattered light interferes constructively or destructively with the specular component in a high numerical aperture illumination and detection system to form a speckle field. Various methods of determining residual signals indicative of the speckle field are presented. Furthermore, various methods of determining structural irregularities based on analysis of the residual signals are presented. In various embodiments, illumination with a high degree of spatial coherence is provided over any of a wide range of angles of incidence, multiple polarization channels, and multiple wavelength channels. In addition, diffracted light is collected over a wide range of angles of detection.
    • 提出了系统和方法,以基于光学测量系统所采取的测量来增强和分离指示散斑场的残留信号。 诸如粗糙度和形貌错误的结构不规则导致散射在衍射光的镜面反射分量之外的光。 散射光在高数值孔径照明和检测系统中与镜面分量建设性或破坏性地干涉以形成斑点。 提出了确定表示斑点的残余信号的各种方法。 此外,提出了基于剩余信号分析确定结构不规则性的各种方法。 在各种实施例中,在宽范围的入射角,多个极化通道和多个波长通道中的任何一个上提供具有高度空间相干性的照明。 另外,在宽范围的检测角度收集衍射光。
    • 4. 发明申请
    • SINGLE WAVELENGTH ELLIPSOMETRY WITH IMPROVED SPOT SIZE CAPABILITY
    • 具有改进的点尺寸能力的单波长椭圆测量
    • WO2017127789A1
    • 2017-07-27
    • PCT/US2017/014523
    • 2017-01-23
    • KLA-TENCOR CORPORATION
    • SALCIN, EsenWANG, FumingPETERLINZ, KevinKWAK, HidongKVAMME, DamonGREENBERG, UriHENNIGAN, Daniel R.
    • G01N21/21G01N21/95
    • G01N21/211G01B11/065G01B2210/56G01N21/9501
    • Methods and systems for performing single wavelength ellipsometry (SWE) measurements with reduced measurement spot size are presented herein. In one aspect, a pupil stop is located at or near a pupil plane in the collection optical path to reduce sensitivity to target edge diffraction effects. In another aspect, a field stop is located at or near an image plane conjugate to the wafer plane in the collection optical path to reduce sensitivity to undesired optical-structural interactions. In another aspect, a linear polarizer acting on the input beam of the SWE system includes a thin, nanoparticle based polarizer element. The nanoparticle based polarizer element improves illumination beam quality and reduces astigmatism on the wafer plane. The pupil and field stops filter out unwanted light rays before reaching the detector. As a result, measurement spot size is reduced and tool-to-tool matching performance for small measurement targets is greatly enhanced.
    • 本文给出用于执行具有减小的测量点尺寸的单波长椭圆偏光(SWE)测量的方法和系统。 在一个方面,瞳孔光阑位于收集光路中的瞳平面处或附近以降低对目标边缘衍射效应的灵敏度。 在另一方面,场截止器位于收集光路中与晶片平面共轭的像平面处或附近,以降低对不期望的光学 - 结构相互作用的敏感度。 在另一方面,作用于SWE系统的输入光束的线性偏振器包括基于纳米颗粒的薄的偏振器元件。 基于纳米粒子的偏振器元件改善了照明光束质量并降低了晶圆平面上的散光。 瞳孔和视场在到达探测器之前停止滤除不需要的光线。 结果,测量点尺寸减小,小型测量目标的刀具到刀具匹配性能大大增强。
    • 5. 发明申请
    • METROLOGY TOOL WITH COMBINED XRF AND SAXS CAPABILITIES
    • 具有组合XRF和SAXS能力的计量工具
    • WO2015026855A1
    • 2015-02-26
    • PCT/US2014/051741
    • 2014-08-19
    • KLA-TENCOR CORPORATION
    • BAKEMAN, MichaelSHCHEGROV, AndreiPETERLINZ, KevinDZIURA, Thaddeus Gerard
    • H01L21/66
    • G01N23/223G01N23/201G01N2223/6116
    • Methods and systems for performing simultaneous X-ray Fluorescence (XRF) and small angle x-ray scattering (SAXS) measurements over a desired inspection area of a specimen are presented. SAXS measurements combined with XRF measurements enables a high throughput metrology tool with increased measurement capabilities. The high energy nature of x-ray radiation penetrates optically opaque thin films, buried structures, high aspect ratio structures, and devices including many thin film layers. SAXS measurements of a particular location of a planar specimen are performed at a number of different out of plane orientations. This increases measurement sensitivity, reduces correlations among parameters, and improves measurement accuracy. In addition, specimen parameter values are resolved with greater accuracy by fitting data sets derived from both SAXS and XRF measurements based on models that share at least one material parameter. The fitting can be performed sequentially or in parallel.
    • 提出了在样本的期望检查区域上执行同时X射线荧光(XRF)和小角度X射线散射(SAXS)测量的方法和系统。 SAXS测量结合XRF测量,可实现高吞吐量测量工具,增加测量能力。 x射线辐射的高能量性质穿透光学不透明的薄膜,掩埋结构,高纵横比结构以及包括许多薄膜层的器件。 平面样本的特定位置的SAXS测量在多个不同的平面外取向进行。 这增加了测量灵敏度,降低了参数之间的相关性,并提高了测量精度。 此外,通过根据共享至少一个材料参数的模型拟合从SAXS和XRF测量得到的数据集,可以更准确地解决样本参数值。 可以顺序地或并行地执行装配。
    • 6. 发明申请
    • COMBINED X-RAY AND OPTICAL METROLOGY
    • 组合X射线和光学计量学
    • WO2015006234A1
    • 2015-01-15
    • PCT/US2014/045607
    • 2014-07-07
    • KLA-TENCOR CORPORATION
    • PETERLINZ, KevinSHCHEGROV, AndreiBAKEMAN, MichaelDZIURA, Thaddeus Gerard
    • H01L21/66
    • G01N23/203G01B15/00G01B2210/56G01N23/2206H01L22/12H01L22/20
    • Structural parameters of a specimen are determined by fitting models of the response of the specimen to measurements collected by different measurement techniques in a combined analysis. X-ray measurement data of a specimen is analyzed to determine at least one specimen parameter value that is treated as a constant in a combined analysis of both optical measurements and x-ray measurements of the specimen. For example, a particular structural property or a particular material property, such as an elemental composition of the specimen, is determined based on x-ray measurement data. The parameter(s) determined from the x-ray measurement data are treated as constants in a subsequent, combined analysis of both optical measurements and x-ray measurements of the specimen. In a further aspect, the structure of the response models is altered based on the quality of the fit between the models and the corresponding measurement data.
    • 样本的结构参数是通过将样本的响应拟合到通过不同测量技术在综合分析中收集的测量结果来确定的。 分析样本的X射线测量数据,以确定在样本的光学测量和x射线测量的组合分析中被视为常数的至少一个样本参数值。 例如,基于x射线测量数据确定特定结构性质或特定材料性质,例如样品的元素组成。 从x射线测量数据确定的参数在随后的样本的光学测量和x射线测量的组合分析中被视为常数。 在另一方面,响应模型的结构基于模型与相应测量数据之间的拟合质量而改变。