会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • LATERAL COLLECTION PHOTOVOLTAICS
    • 横向收藏光伏
    • WO2008086482A3
    • 2008-10-09
    • PCT/US2008050780
    • 2008-01-10
    • SOLARITY INCFONASH STEPHEN JLI HANDONGSTONE DAVID
    • FONASH STEPHEN JLI HANDONGSTONE DAVID
    • H01L31/00
    • H01L51/4213H01L31/022425H01L51/0037H01L51/4266Y02E10/549
    • Lateral collection photovoltaic (LCP) structures based on micro- and nano-collecting elements are used to collect photogenerated carriers. In one set of embodiments, the collecting elements are arrayed on a conducting substrate. In certain versions, the collecting elements are substantially perpendicular to the conductor. In another set of embodiments, the micro- or nano-scale collecting elements do not have direct physical and electrical contact to any conducting substrate. In one version, both anode and cathode electrodes are laterally arrayed. In another version, the collecting elements of one electrode are a composite wherein a conductor is separated by an insulator, which is part of each collector element, from the opposing electrode residing on the substrate. In still another version, the collection of one electrode structure is a composite containing both the anode and the cathode collecting elements for collection. An active material is positioned among the collector elements.
    • 使用基于微纳米收集元件的侧向收集光伏(LCP)结构来收集光生载流子。 在一组实施例中,集合元件排列在导电衬底上。 在某些形式中,收集元件基本上垂直于导体。 在另一组实施例中,微尺度或纳米级收集元件不具有与任何导电衬底的直接物理和电接触。 在一个版本中,阳极和阴极电极都是横向排列的。 在另一个版本中,一个电极的收集元件是复合材料,其中导体由驻留在基底上的相对电极的绝缘体分隔开,绝缘体是每个集电器元件的一部分。 在另一个版本中,一个电极结构的集合是包含用于收集的阳极和阴极收集元件的复合物。 活性物质位于收集器元件之间。
    • 3. 发明申请
    • LATERAL COLLECTION PHOTOVOLTAICS
    • 横向收藏光伏
    • WO2008086482A2
    • 2008-07-17
    • PCT/US2008050780
    • 2008-01-10
    • SOLARITY INCFONASH STEPHEN JLI HANDONGSTONE DAVID
    • FONASH STEPHEN JLI HANDONGSTONE DAVID
    • B32B7/00
    • H01L51/4213H01L31/022425H01L51/0037H01L51/4266Y02E10/549
    • Lateral collection photovoltaic (LCP) structures based on micro- and nano-collecting elements are used to collect photogenerated carriers. In one set of embodiments, the collecting elements are arrayed on a conducting substrate. In certain versions, the collecting elements are substantially perpendicular to the conductor. In another set of embodiments, the micro- or nano-scale collecting elements do not have direct physical and electrical contact to any conducting substrate. In one version, both anode and cathode electrodes are laterally arrayed. In another version, the collecting elements of one electrode are a composite wherein a conductor is separated by an insulator, which is part of each collector element, from the opposing electrode residing on the substrate. In still another version, the collection of one electrode structure is a composite containing both the anode and the cathode collecting elements for collection. An active material is positioned among the collector elements.
    • 采用基于微米和纳米收集元件的横向收集光伏(LCP)结构来收集光生载流子。 在一组实施例中,收集元件排列在导电基底上。 在某些版本中,收集元件基本垂直于导体。 在另一组实施例中,微米级或纳米级收集元件不具有与任何导电衬底的直接物理和电接触。 在一个版本中,阳极和阴极都横向排列。 在另一种形式中,一个电极的收集元件是复合物,其中导体由作为每个收集元件的一部分的绝缘体与位于基板上的相对电极分开。 在又一个版本中,一个电极结构的集合是包含用于收集的阳极和阴极收集元件的复合物。 活性材料位于收集器元件之间。
    • 7. 发明申请
    • PARALLEL FLOW CONTROL (PFC) APPROACH FOR ACTIVE CONTROL, CHARACTERIZATION, AND MANIPULATION OF NANOFLUIDICS
    • 用于主动控制,表征和操纵纳米流体的并行流动控制(PFC)方法
    • WO2008127438A2
    • 2008-10-23
    • PCT/US2007085630
    • 2007-11-27
    • PENN STATE RES FOUNDFONASH STEPHEN JNAM WOOK JUNLIANG HUINAN
    • FONASH STEPHEN JNAM WOOK JUNLIANG HUINAN
    • C12M3/00
    • F04B19/006B01L3/50273B01L2300/0816B01L2300/0861B01L2300/088B01L2300/0896B01L2400/0487B82Y30/00
    • A method of active nanofluidic flow control (parallel flow control-PFC) includes providing a nanofluidic channel and a pressure-driven microfluidic channel connected in parallel and actively controlling flow through the nanofluidic channel by using the pressure-driven microfluidic channel. A method of nanofluidic flow measurement includes providing a nanofluidic channel, a pressure-driven microfluidic channel connected in parallel for flow control, and an additional measurement microfluidic channel connected in series for flow measurement and measuring the nanofluidic flow rate by measuring the filling rate in the measurement microfluidic channel. A method of nano-scale volume fluid manipulation includes providing a nanofluidic channel and a pressure-driven microfluidic channel connected in parallel and manipulating nano-scale volume fluid through the nanofluidic channel by using the pressure-driven microfluidic channel. A method of fabricating a fluidic system is provided. The method includes forming a nanofluidic channel and a pressure-driven microfluidic channel connected to the nanofluidic channel in parallel.
    • 主动纳流控流量控制(并流控制-PFC)的方法包括提供并联连接的纳流体通道和压力驱动微流体通道,并通过使用压力驱动的微流体通道主动控制流过纳流体通道的流量。 纳流体流量测量的方法包括提供纳流体通道,并联连接用于流量控制的压力驱动的微流体通道,以及串联连接的另外的测量微流体通道以用于流量测量并且通过测量纳流体流量测量中的填充速率来测量纳流体流速 测量微流体通道。 纳米级体积流体操纵的方法包括提供平行连接的纳米流体通道和压力驱动的微流体通道并且通过使用压力驱动的微流体通道操纵纳米流体通道通过纳米流体通道。 提供了一种制造流体系统的方法。 该方法包括形成并联连接到纳米流体通道的纳米流体通道和压力驱动的微流体通道。