会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明申请
    • PARALLEL FLOW CONTROL (PFC) APPROACH FOR ACTIVE CONTROL, CHARACTERIZATION, AND MANIPULATION OF NANOFLUIDICS
    • 用于主动控制,表征和操纵纳米流体的并行流动控制(PFC)方法
    • WO2008127438A2
    • 2008-10-23
    • PCT/US2007085630
    • 2007-11-27
    • PENN STATE RES FOUNDFONASH STEPHEN JNAM WOOK JUNLIANG HUINAN
    • FONASH STEPHEN JNAM WOOK JUNLIANG HUINAN
    • C12M3/00
    • F04B19/006B01L3/50273B01L2300/0816B01L2300/0861B01L2300/088B01L2300/0896B01L2400/0487B82Y30/00
    • A method of active nanofluidic flow control (parallel flow control-PFC) includes providing a nanofluidic channel and a pressure-driven microfluidic channel connected in parallel and actively controlling flow through the nanofluidic channel by using the pressure-driven microfluidic channel. A method of nanofluidic flow measurement includes providing a nanofluidic channel, a pressure-driven microfluidic channel connected in parallel for flow control, and an additional measurement microfluidic channel connected in series for flow measurement and measuring the nanofluidic flow rate by measuring the filling rate in the measurement microfluidic channel. A method of nano-scale volume fluid manipulation includes providing a nanofluidic channel and a pressure-driven microfluidic channel connected in parallel and manipulating nano-scale volume fluid through the nanofluidic channel by using the pressure-driven microfluidic channel. A method of fabricating a fluidic system is provided. The method includes forming a nanofluidic channel and a pressure-driven microfluidic channel connected to the nanofluidic channel in parallel.
    • 主动纳流控流量控制(并流控制-PFC)的方法包括提供并联连接的纳流体通道和压力驱动微流体通道,并通过使用压力驱动的微流体通道主动控制流过纳流体通道的流量。 纳流体流量测量的方法包括提供纳流体通道,并联连接用于流量控制的压力驱动的微流体通道,以及串联连接的另外的测量微流体通道以用于流量测量并且通过测量纳流体流量测量中的填充速率来测量纳流体流速 测量微流体通道。 纳米级体积流体操纵的方法包括提供平行连接的纳米流体通道和压力驱动的微流体通道并且通过使用压力驱动的微流体通道操纵纳米流体通道通过纳米流体通道。 提供了一种制造流体系统的方法。 该方法包括形成并联连接到纳米流体通道的纳米流体通道和压力驱动的微流体通道。
    • 7. 发明申请
    • ELECTRONIC AND OPTO-ELECTRONIC DEVICES FABRICATED FROM NANOSTRUCTURED HIGH SURFACE TO VOLUME RATIO THIN FILMS
    • 从纳米结构高表面制成的电子和光电子器件,以体积比例薄膜
    • WO02101352A8
    • 2003-08-14
    • PCT/US0217909
    • 2002-06-06
    • PENN STATE RES FOUND
    • KALKAN KAAN AFONASH STEPHEN J
    • B81B7/04G01N27/02H01L51/00H01L51/30H01L51/42
    • H01L51/4213H01L51/0038H01L51/4266Y02E10/549Y02P70/521
    • An electronic opto-electronic device or a chemical sensor comprising: an interpenetrating network of a nanostructured high surface area to volume ratio film material and an organic/inorganic material forming a nanocomposite. The high surface area to volume film material is obtained onto an electrode substrate first, such that the nano-scale basic elements comprising this film material are embedded in a void matrix while having electrical connectivity with the elctrode substrate. For example, the film material may comprise an array of nano-protrusions electrically connected to the electrode substrate and separated by a void matrix. The interpenetrating network is formed by introducing an appropriate organic/inorganic material into the void volume of the high surface area to vlume film material. Further electrode(s) are defined onto the film or intra-void material to achieve a certain device. Charge separation, charge injection, charge storage, field effect devices, ohmic contacts, and chemical sensors are possible.
    • 一种电子光电器件或化学传感器,包括:纳米结构的高表面积与体积比的薄膜材料的互穿网络和形成纳米复合材料的有机/无机材料。 首先在电极基板上获得高表面积体积膜材料,使得包含该膜材料的纳米级碱性元素嵌入空隙矩阵中,同时与电极基底具有电连接性。 例如,膜材料可以包括电连接到电极基底并由空隙矩阵分开的纳米突起阵列。 通过将适当的有机/无机材料引入高表面积的空隙体积中来形成互穿网络以形成薄膜材料。 另外的电极被限定在膜或孔内材料上以实现某种器件。 电荷分离,电荷注入,电荷存储,场效应器件,欧姆接触和化学传感器是可能的。
    • 8. 发明申请
    • ELECTRONIC AND OPTO-ELECTRONIC DEVICES FABRICATED FROM NANOSTRUCTURED HIGH SURFACE TO VOLUME RATIO THIN FILMS
    • 从纳米结构高表面制成的电子和光电子器件,以体积比例薄膜
    • WO02101352A2
    • 2002-12-19
    • PCT/US0217909
    • 2002-06-06
    • PENN STATE RES FOUND
    • KALKAN KAAN AFONASH STEPHEN J
    • B81B7/04G01N27/02H01L51/00H01L51/30H01L51/42G01N
    • H01L51/4213H01L51/0038H01L51/4266Y02E10/549Y02P70/521
    • An electronic opto-electronic device or a chemical sensor comprising: an interpenetrating network of a nanostructured high surface area to volume ratio film material and an organic/inorganic material forming a nanocomposite. The high surface area to volume film material is obtained onto an electrode substrate first, such that the nano-scale basic elements comprising this film material are embedded in a void matrix while having electrical connectivity with the elctrode substrate. For example, the film material may comprise an array of nano-protrusions electrically connected to the electrode substrate and separated by a void matrix. The interpenetrating network is formed by introducing an appropriate organic/inorganic material into the void volume of the high surface area to vlume film material. Further electrode(s) are defined onto the film or intra-void material to achieve a certain device. Charge separation, charge injection, charge storage, field effect devices, ohmic contacts, and chemical sensors are possible.
    • 一种电子光电器件或化学传感器,包括:纳米结构的高表面积与体积比的薄膜材料的互穿网络和形成纳米复合材料的有机/无机材料。 首先在电极基板上获得高表面积体积膜材料,使得包含该膜材料的纳米级碱性元素嵌入空隙矩阵中,同时与电极基底具有电连接性。 例如,膜材料可以包括电连接到电极基底并由空隙矩阵分开的纳米突起阵列。 通过将适当的有机/无机材料引入高表面积的空隙体积中来形成互穿网络以形成薄膜材料。 另外的电极被限定在膜或孔内材料上以实现某种器件。 电荷分离,电荷注入,电荷存储,场效应器件,欧姆接触和化学传感器是可能的。