会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • SCANNING MICROSCOPE
    • 扫描显微镜
    • WO2014007633A1
    • 2014-01-09
    • PCT/NL2013/050503
    • 2013-07-05
    • NEDERLANDSE ORGANISATIE VOOR TOEGEPAST-NATUURWETENSCHAPPELIJK ONDERZOEK TNO
    • KUIPER, Stefan
    • G01Q10/04G02B21/26
    • G01Q10/04G02B21/26G11B9/1436G12B5/00H02N2/028
    • A scanning probe microscope comprises a base, a positioning stage mounted on the base, a platform mounted on the positioning stage and a probe tip on the platform, the positioning stage comprising - a first and second linear displacement actuator, each having a main direction of displacement, the main directions of displacement of the first and second linear displacement actuator being oriented substantially parallel to each other, - a first and second strut or struts coupled directly or indirectly between the platform and ends of the first and second actuators where the first and second actuators terminate in the main direction of displacement respectively, at least the first strut or struts being directed at an oblique angle to the main direction of displacement of the actuators.
    • 扫描探针显微镜包括基座,安装在基座上的定位台,安装在定位台上的平台和平台上的探针尖端,定位台包括:第一和第二线性位移致动器,每个具有主要方向 位移,第一和第二线性位移致动器的主要取向方向基本上彼此平行;第一和第二支柱或支柱,其直接或间接地连接在第一和第二致动器的平台和端部之间, 第二执行器分别终止于主要位移方向,至少第一支柱或支柱与致动器的主移动方向成倾斜的角度。
    • 4. 发明申请
    • METHOD OF DETERMINING AN OVERLAY ERROR, MANUFACTURING METHOD AND SYSTEM FOR MANUFACTURING OF A MULTILAYER SEMICONDUCTOR DEVICE, AND SEMICONDUCTOR DEVICE MANUFACTURED THEREBY
    • 确定覆盖误差的方法,用于制造多层半导体器件的制造方法和系统以及由其制造的半导体器件
    • WO2017086787A1
    • 2017-05-26
    • PCT/NL2016/050803
    • 2016-11-17
    • NEDERLANDSE ORGANISATIE VOOR TOEGEPAST-NATUURWETENSCHAPPELIJK ONDERZOEK TNO
    • KUIPER, StefanVAN ZWET, Erwin JohnBÄUMER, Stefan Michael BrunoSADEGHIAN MARNANI, Hamed
    • H01L21/66G03F7/20
    • H01L22/12G03F7/70633H01L22/20
    • Method of determining an overlay error, manufacturing method and system for manufacturing of a multilayer semiconductor device, and semiconductor device manufactured thereby. This document describes a method of determining an overlay error during manufacturing of a multilayer semiconductor device. Manufacturing of the semiconductor device comprises forming a stack of material layers comprising depositing of at least two subsequent patterned layers (26, 27) of semiconductor material, the patterned layers comprising a first patterned layer (26) having a first marker element (29) and a second patterned layer (27) having a second marker element (37). The determining of the overlay error comprises determining relative positions of the first and second marker element in relation to each other, such as to determine the overlay error between the first patterned layer and the second patterned layer. In addition an imaging step is performed on at least one of said first and second patterned layer, for determining relative positions of the respective first (29) or second (37) marker element and a pattern feature of a device pattern (30, 36) comprised by said respective first (26) and second (27) patterned layer.
    • 确定重叠误差的方法,用于制造多层半导体器件的制造方法和系统以及由此制造的半导体器件。 该文件描述了在制造多层半导体器件期间确定重叠误差的方法。 所述半导体器件的制造包括形成包括沉积至少两个半导体材料的后续图案化层(26,27)的材料层堆叠,所述图案化层包括具有第一标记元件(29)的第一图案化层(26)和 具有第二标记元件(37)的第二图案化层(27)。 确定重叠误差包括确定第一和第二标记元件相对于彼此的相对位置,例如以确定第一图案化层和第二图案化层之间的重叠误差。 此外,在所述第一和第二图案化层中的至少一个上执行成像步骤,用于确定相应的第一(29)或第二(37)标记元件和器件图案(30,36)的图案特征的相对位置, 由所述相应的第一图案层(26)和第二图案层(27)构成。
    • 5. 发明申请
    • SCANNING PROBE MICROSCOPY SYSTEM FOR MAPPING HIGH ASPECT RATIO NANOSTRUCTURES ON A SURFACE OF A SAMPLE
    • 扫描探针显微系统,用于在样品表面上绘制高比例纳米结构
    • WO2017010882A1
    • 2017-01-19
    • PCT/NL2016/050521
    • 2016-07-14
    • NEDERLANDSE ORGANISATIE VOOR TOEGEPAST-NATUURWETENSCHAPPELIJK ONDERZOEK TNO
    • KUIPER, StefanCROWCOMBE, William Edward
    • G01Q70/02
    • G01Q70/02
    • The invention is directed at a scanning probe microscopy system for mapping nanostructures on a surface of a sample being arranged for sensing a high aspect ratio nanostructure, the system comprising a metrology frame, a sample support structure for supporting a sample, a sensor head including a probe, wherein the probe comprises a probe tip, and wherein the scanning probe microscopy system further comprises an actuator for scanning the probe tip relative to the substrate surface for mapping of the nanostructures, wherein, for sensing the high aspect ratio nanostructure, the probe tip is arranged under a fixed offset angle with respect to the sensor head such as to be angled relative to the sample surface, and wherein the system further comprises a sensor head carrier for receiving the sensor head, both being provided with a mutually cooperating mounting structure for forming a kinematic mount.
    • 本发明涉及一种扫描探针显微镜系统,用于映射样品表面上的纳米结构,用于感测高纵横比纳米结构,所述系统包括计量框架,用于支撑样品的样品支撑结构, 探针,其中所述探针包括探针尖端,并且其中所述扫描探针显微镜系统还包括用于相对于所述衬底表面扫描所述探针尖端以用于映射所述纳米结构的致动器,其中,为了感测所述高纵横比纳米结构,所述探针尖端 相对于传感器头部以固定的偏置角度布置成相对于样品表面成角度,并且其中该系统还包括用于接收传感器头部的传感器头托架,两个传感器头托架设置有相互配合的安装结构,用于 形成运动座。
    • 6. 发明申请
    • OPTICAL COHERENCE TOMOGRAPHY METHOD, SYSTEM AND COMPUTER PROGRAM PRODUCT THEREFOR
    • 光学相干方法,系统和计算机程序产品
    • WO2016148569A1
    • 2016-09-22
    • PCT/NL2016/050186
    • 2016-03-17
    • NEDERLANDSE ORGANISATIE VOOR TOEGEPAST-NATUURWETENSCHAPPELIJK ONDERZOEK TNO
    • KUIPER, StefanDOELMAN, Nicolaas JanLIEBIG, ThomasKLOP, Willem Arjan
    • A61B3/10A61B3/15
    • A61B3/102A61B3/1225A61B3/14A61B3/15G01B9/02091G06T1/0007G06T5/50
    • The present invention relates to an optical coherence tomography method, comprising: providing a beam of imaging radiation from a radiation source of an optical coherence tomography apparatus; directing, using directing optics, the beam of imaging radiation towards a fundus of a human or animal eye; and receiving a reflected portion of the imaging radiation by the optical coherence tomography apparatus; wherein the method further comprises: providing, by a tracking camera, a tracking image of an image area covering at least a part of said fundus; analyzing the tracking image for detecting a displacement of the fundus; and adapting, at least dependent on the detected displacement, a direction of the beam of imaging radiation by actuating an optical correction unit of said direction optics; and in addition to said adapting of the direction of the beam of imaging radiation, adapting a location of the image area on said fundus imaged by the tracking camera at least dependent on the detected displacement.
    • 本发明涉及一种光学相干断层摄影方法,包括:提供来自光学相干断层摄影装置的辐射源的成像辐射束; 使用引导光学器件将成像辐射束瞄准人或动物眼睛的眼底; 以及通过光学相干断层摄影装置接收成像辐射的反射部分; 其中所述方法还包括:通过跟踪相机提供覆盖所述眼底的至少一部分的图像区域的跟踪图像; 分析跟踪图像以检测眼底位移; 以及通过致动所述方向光学器件的光学校正单元,至少依赖于检测到的位移来适配成像辐射束的方向; 并且除了所述适配成像辐射束的方向之外,还使得至少依赖于检测到的位移使由跟踪摄像机成像的所述眼底上的图像区域的位置适配。
    • 8. 发明申请
    • AN OPTICAL ELEMENT EXCHANGE UNIT
    • WO2021015621A1
    • 2021-01-28
    • PCT/NL2020/050486
    • 2020-07-24
    • NEDERLANDSE ORGANISATIE VOOR TOEGEPAST- NATUURWETENSCHAPPELIJK ONDERZOEK TNO
    • KUIPER, StefanKOOPER, Martin Paul Alfred
    • H02K37/02H02K21/44H02K41/03G02B26/00H02K1/24
    • An optical element exchange unit, has a rotatable wheel e.g. with different filters. The wheel has first soft magnetic teeth protruding from a soft magnetic part of the wheel at even angular offset along at least part of a ring around a rotation axis of the wheel. The optical element exchange unit has a stator comprising a first soft magnetic yoke, the first soft magnetic yoke having poles with a first group and second group of at least one second soft magnetic tooth respectively, the second soft magnetic teeth of the first and second group protruding from the poles of the first soft magnetic yoke towards the first soft magnetic teeth and a second soft magnetic yoke, the second soft magnetic yoke having poles with a third group and fourth group of at least one second soft magnetic tooth respectively, the second soft magnetic teeth of the third and fourth group protruding from the poles of the second soft magnetic yoke towards the first soft magnetic teeth. A permanent magnet is magnetically coupled between parts of the first and second soft magnetic yoke. The teeth of the first, second, third and fourth groups are positioned so that, when each tooth of the first group is aligned with its nearest first soft magnetic tooth, each second soft magnetic tooth of the second group is halfway the angular offset between its nearest first soft magnetic teeth, and the second soft magnetic teeth in the third and fourth group are less than half the angular offset in opposite directions from their nearest first soft magnetic teeth.