会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 51. 发明申请
    • POSITION SENSOR, SENSOR ARRANGEMENT AND LITHOGRAPHY APPARATUS COMPRISING POSITION SENSOR
    • 位置传感器,传感器布置和包含位置传感器的平面设备
    • WO2014140298A3
    • 2014-12-18
    • PCT/EP2014055138
    • 2014-03-14
    • ZEISS CARL SMT GMBH
    • MONTAGNE ANTON
    • G03F7/20
    • G01D5/2275G01D5/225G03F7/70141G03F7/70258G03F7/7085
    • A position sensor for detecting a position of a measurement object (150), in particular of an optical element of a lithography apparatus is suggested, which includes a transmission coil (104; 204; 304; 404; 504; 604), a reception coil (106; 206; 306; 406; 506; 606), which is arranged in such a way that when a transmission signal (Vt, It) is applied to the transmission coil, a reception voltage (Vz, Vx) is generated at the reception coil, and an evaluation device (108; 208; 308; 408; 508; 608), which links a transmission voltage signal generated in a manner dependent on the transmission signal with a reception voltage signal generated in a manner dependent on the reception voltage and generates a sensor output signal containing information about the relative position of the measurement object with respect to the coils of the position sensor.
    • 提出了一种用于检测测量对象(150)的位置的位置传感器,特别是光刻设备的光学元件的位置传感器,其包括传输线圈(104; 204; 304; 404; 504; 604),接收线圈 (106; 206; 306; 406; 506; 606),其布置成使得当发送信号(Vt,It)被施加到发送线圈时,在该发送线圈处产生接收电压(Vz​​,Vx) 接收线圈和评估装置(108; 208; 308; 408; 508; 608),其以取决于所述发送信号的方式生成的发送电压信号与以取决于所述接收电压的方式生成的接收电压信号 并且生成包含关于测量对象相对于位置传感器的线圈的相对位置的信息的传感器输出信号。
    • 53. 发明申请
    • PROJECTION EXPOSURE APPARATUS COMPRISING A MEASURING SYSTEM FOR MEASURING AN OPTICAL ELEMENT
    • 包含用于测量光学元件的测量系统的投影曝光装置
    • WO2013113480A1
    • 2013-08-08
    • PCT/EP2013/000200
    • 2013-01-23
    • CARL ZEISS SMT GMBH
    • BLEIDISTEL, SaschaHARTJES, JoachimGRUNER, Toralf
    • G02B27/00G01N21/41G03F7/20
    • G03F7/706G01K11/00G01M11/0242G01M11/0271G03F7/70141G03F7/70258G03F7/7085G03F7/70891
    • A projection exposure apparatus (10) for microlithography comprises a measuring system (50) for measuring an optical element of the projection exposure apparatus. The measuring system (50) comprises: an irradiation device (54), which is configured to radiate measuring radiation (62) in different directions (64) onto the optical element (20), such that the measuring radiation (62) covers a respective optical path length (68) within the optical element (20) for the different directions (64) of incidence, a detection device (56), which is configured to measure, for the respective direction (64) of incidence, the corresponding optical path length covered by the measuring radiation (62) in the optical element (20), and an evaluation device, which is configured to determine a spatially resolved distribution of the refractive index in the optical element (20) by computed-tomographic back projection of the measured path lengths taking account of the respective direction of incidence.
    • 用于微光刻的投影曝光装置(10)包括用于测量投影曝光装置的光学元件的测量系统(50)。 测量系统(50)包括:照射装置(54),其配置成将不同方向(64)上的测量辐射(62)辐射到光学元件(20)上,使得测量辐射(62)覆盖相应的 用于不同方向(64)入射的光学元件(20)内的光路长度(68);检测装置(56),被配置为针对相应的入射方向(64)测量相应的光路 由所述光学元件(20)中的所述测量辐射(62)覆盖的长度以及评估装置,其被配置为通过所述光学元件(20)的计算机断层摄影反投影来确定所述光学元件(20)中的折射率的空间分辨分布 测量的路径长度考虑到相应的入射方向。
    • 54. 发明申请
    • IMAGING OPTICAL SYSTEM FOR MICROLITHOGRAPHY
    • 成像光学系统的微观算法
    • WO2012041459A3
    • 2012-08-30
    • PCT/EP2011004744
    • 2011-09-22
    • ZEISS CARL SMT GMBHROGALSKY OLAFSCHNEIDER SONJABITTNER BORISKUGLER JENSGELLRICH BERNHARDFREIMANN ROLF
    • ROGALSKY OLAFSCHNEIDER SONJABITTNER BORISKUGLER JENSGELLRICH BERNHARDFREIMANN ROLF
    • G03F7/20G02B27/00
    • G02B17/06G02B17/0663G02B27/0012G03F7/70258G03F7/70308G03F7/70891
    • An imaging optical system (10), in particular a projection objective, for microlithography, comprises optical elements (M1-M6) configured to guide electromagnetic radiation (19) with a wavelength ? in an imaging beam path for imaging an object field (13) into an image plane (14), and a pupil (24), having coordinates (p, q) which, together with the image field (16), having coordinates (x, y), of the optical system (10), spans an extended 4-dimensional pupil space, having coordinates (x, y, p, q) as a function of which a wavefront W(x, y, p, q) of the radiation (19) passing through the optical system is defined. At least a first of the optical elements (M1-M6) has a non-rotationally symmetrical surface (26) having a respective surface deviation in relation to every rotationally symmetrical surface (28), which two-dimensional surface has a difference between its greatest elevation and its deepest valley of at least ?. A sub-aperture ratio of the non- rotationally symmetrical surface deviates at every point (?1, O2) of the object field (13) by at least 0.01 from the sub-aperture ratio of every other surface of the optical elements, which is located in the imaging beam path, at the respective point (O1, O2) of the object field (13). Furthermore, the surface (26) of the first optical element (M4) is configured such that by displacing the first optical element relative to the other optical elements a change to the wavefront of the optical system (10) can be brought about which has a portion with at least 2-fold symmetry, the maximum value of the wavefront change in the extended 4- dimensional pupil space being at least 1 x 10-5 of the wavelength ?.
    • 用于微光刻的成像光学系统(10),特别是投影物镜包括光学元件(M1-M6),其被配置为引导具有波长λ的电磁辐射(19) 在用于将物场(13)成像到图像平面(14)的成像光束路径中,以及具有坐标(p,q)的光瞳(24),其与图像场(16)一起具有坐标(x, (x,y,p,q)的波前W(x,y,p,q)的函数,跨越具有坐标(x,y,p,q)的扩展的4维瞳孔空间, 定义通过光学系统的辐射(19)。 至少第一光学元件(M1-M6)具有相对于每个旋转对称表面(28)具有相应表面偏差的非旋转对称表面(26),该二维表面具有最大的 海拔及其最深的山谷至少? 非旋转对称表面的子孔径比从物体场(13)的每个点(θ1,O 2)偏离光学元件的每个其他表面的子孔径比至少0.01,这是 位于成像光束路径中,位于物场(13)的相应点(O1,O2)处。 此外,第一光学元件(M4)的表面(26)被配置为使得通过相对于其它光学元件移位第一光学元件,可以使光学系统(10)的波前的改变具有 具有至少2倍对称性的部分,扩展的四维光瞳空间中的波前变化的最大值为波长λ的至少1×10 -5。
    • 55. 发明申请
    • PROJECTION EXPOSURE SYSTEM FOR MICROLITHOGRAPHY AND METHOD OF MONITORING A LATERAL IMAGING STABILITY
    • 用于微观计算的投影曝光系统和监测横向成像稳定性的方法
    • WO2009156111A1
    • 2009-12-30
    • PCT/EP2009/004493
    • 2009-06-23
    • CARL ZEISS SMT AGMANGER, MatthiasSCHÖCH, ArminMÜLLER, Ulrich
    • MANGER, MatthiasSCHÖCH, ArminMÜLLER, Ulrich
    • G03F7/20
    • G03F7/70191G03F7/70258G03F7/70591G03F7/7085
    • A projection exposure system (10) for microlithography comprises projection optics (12) for imaging mask structures into a substrate plane (16), an input diffraction element (28) which is configured to convert irradiated measurement radiation (21 ) into at least two test waves (30) directed onto the projection optics (12) with different propagation directions, a detection diffraction element (34; 28) which is disposed in the optical path of the test waves (30) after the latter have passed through the projection optics (12) and is configured to produce a detection beam (36) from the test waves (30) which has a mixture of radiation portions of both test waves (30), a photo detector (38) disposed in the optical path of the detection beam (36) which is configured to record the radiation intensity of the detection beam (36), time resolved, and an evaluation unit which is configured to determine the lateral imaging stability of the projection optics (12) from the radiation intensity recorded.
    • 用于微光刻的投影曝光系统(10)包括用于将掩模结构成像到基板平面(16)中的投影光学器件(12),被配置为将照射的测量辐射(21)转换成至少两个测试的输入衍射元件(28) 以不同的传播方向指向投影光学器件(12)的波(30);检测衍射元件(34; 28),其被布置在经过投影光学器件的测试波(30)的光路中 12),并且被配置为从具有两个测试波的辐射部分的混合物的测试波(30)产生检测光束(36),设置在检测光束的光路中的光电检测器(38) (36),其被配置为记录检测光束(36)的辐射强度,时间分辨率,以及评估单元,其被配置为根据记录的辐射强度来确定投影光学器件(12)的横向成像稳定性 。
    • 56. 发明申请
    • OPTICAL IMAGING DEVICE WITH THERMAL STABILIZATION
    • 具有热稳定性的光学成像装置
    • WO2009039883A1
    • 2009-04-02
    • PCT/EP2007/060226
    • 2007-09-26
    • CARL ZEISS SMT AGKWAN, Yim-Bun Patrick
    • KWAN, Yim-Bun Patrick
    • G03F7/20
    • G03F7/70891G03F7/70258G03F7/705G03F7/70825G03F7/70833G03F7/7085G03F7/70875G03F7/70983
    • There is provided an optical imaging device comprising an optical imaging system (101) with at least one' optical imaging component (106.1,107.1), a support structure (102.1), a capturing device (111) and a control device (112). The support structure (102.1) supports the at least one optical imaging component (106.1,107.1) and comprises at least one actuator (106.3,107.3). The actuator (106.3,107.3) is adapted to adjust, in at least one degree of freedom, at least one of a geometric parameter of the optical imaging component (106.1,107.1), a relative position of the optical imaging component (106.1,107.1) with respect to at least one reference (108.1) and a relative orientation of the optical imaging component (106.1,107.1) with respect to the at least one reference (108.1) as a function of at least one control signal provided by the control device (112). The capturing device (111) is adapted to continuously capture, at at least one capturing location of the optical projection unit (102), an actual value of a variable representative of a temperature at the location and to provide the actual value to the control device (112). The control device (112) is adapted to generate the at least one control signal as a function of the actual value of the variable and to provide the at least one control signal to the at least one actuator (106.3,107.3) to at least, partially compensate thermally induced alterations in at least one of the geometric parameter, the relative position and the relative orientation of the optical imaging component (106.1,107.1). The control device (112) is adapted to use at least one previously established thermal model of the optical imaging system (101) to generate the at least one control signal,1 the thermal model describing at least one of the geometric parameter, the relative position and the relative orientation of the optical imaging component (106.1,107.1) at least as a function of the variable and the capturing location.
    • 提供了一种光学成像装置,其包括具有至少一个“光学成像部件”(106.1,107.1),一个支撑结构(102.1),一个捕获装置(111)和一个控制装置(112)的光学成像系统(101)。 支撑结构(102.1)支撑至少一个光学成像部件(106.1,107.1)并且包括至少一个致动器(106.3,107.3)。 致动器(106.3,107.3)适于在至少一个自由度中调整光学成像部件(106.1,107.1)的几何参数中的至少一个,光学成像部件(106.1,107.1)的相对位置 )相对于所述至少一个参考(108.1)的至少一个参考(108.1)以及所述光学成像组件(106.1,107.1)相对于所述至少一个参考(108.1)的相对定向,作为由所述控制设备提供的至少一个控制信号的函数 (112)。 捕获装置(111)适于在光学投影单元(102)的至少一个捕获位置连续地捕获表示该位置处的温度的变量的实际值,并向控制装置提供实际值 (112)。 控制装置(112)适于根据变量的实际值产生至少一个控制信号,并且将至少一个控制信号提供给至少一个致动器(106.3,107.3)至少至少一个, 部分地补偿光学成像部件(106.1,107.1)的几何参数,相对位置和相对取向中的至少一个中的热诱导变化。 所述控制装置(112)适于使用所述光学成像系统(101)的至少一个先前建立的热模型来产生所述至少一个控制信号,所述热模型描述所述几何参数中的至少一个,相对位置 以及光学成像组件(106.1,107.1)的相对定向至少作为变量和捕获位置的函数。
    • 58. 发明申请
    • SUPPORT FOR A COMPONENT OF AN OPTICAL DEVICE
    • 支持光学设备的组件
    • WO2008119386A1
    • 2008-10-09
    • PCT/EP2007/053126
    • 2007-03-30
    • Carl Zeiss SMT AGBISCHOFF, ThomasFEUCHT, JoachimWIELAND, Jochen
    • BISCHOFF, ThomasFEUCHT, JoachimWIELAND, Jochen
    • G02B7/00G03F7/20
    • G03F7/7015G02B7/025G03F7/70141G03F7/70258G03F7/70825
    • There is provided an arrangement for an optical device comprising a component of said optical device and a support structure supporting said component. The support structure comprises at least one locking device (113), the at least one locking device being connected to the component and comprising a first fixation (113-1) device and an associated second fixation device (113-2). The first fixation device and the second fixation device are adapted to be, in a movable state, movable with respect to each other along a first degree of freedom and a second degree of freedom into a final position. The first fixation device and the second fixation device are further adapted to be, in a locked state, fixed in the final position by at least one locking means contacting the first fixation device and the second fixation device. In the movable state, the first fixation device and the second fixation device are movable, up to the final position, in a manner free from a mutual pre-stress resulting from a restoring force exerted by at least a part of one of the first fixation device and the second fixation device.
    • 提供了一种用于包括所述光学装置的部件和支撑所述部件的支撑结构的光学装置的装置。 所述支撑结构包括至少一个锁定装置(113),所述至少一个锁定装置连接到所述部件并且包括第一固定装置(113-1)和相关联的第二固定装置(113-2)。 第一固定装置和第二固定装置适于处于可移动状态,其可以相对于彼此沿着第一自由度和第二自由度移动到最终位置。 第一固定装置和第二固定装置进一步适于处于锁定状态,通过接触第一固定装置和第二固定装置的至少一个锁定装置固定在最终位置。 在可动状态下,第一固定装置和第二固定装置可以以不受由第一固定件中的一个的至少一部分施加的恢复力产生的相互预应力的方式移动到最终位置 装置和第二固定装置。
    • 59. 发明申请
    • METHOD FOR IMPROVING THE IMAGING PROPERTIES OF AN OPTICAL SYSTEM AND SUCH AN OPTICAL SYSTEM
    • 方法的光学系统的改善画面属性,而这种光学系统
    • WO2008113605A2
    • 2008-09-25
    • PCT/EP2008002289
    • 2008-03-20
    • ZEISS CARL SMT AGGRUNER TORALFKWAN YIM-BUN-PATRICK
    • GRUNER TORALFKWAN YIM-BUN-PATRICK
    • G02B27/00G03F7/20
    • G02B7/028G02B27/0068G03F7/70258G03F7/70308G03F7/706G03F7/70891
    • The invention relates to a method for improving the imaging properties of an optical system (10, 12). The optical system (10, 12) has a plurality of optical elements in order to depict a structure (24) on a substrate (28) that is disposed in an image plane (32) of the optical system (10, 12). The method comprises a process step (a) of detecting at least one first time-dependent and at least partially reversible imaging error of the optical system (10, 12) caused by the heating of at least one of the optical elements (36, 38, and a process step (b) of at least partially correcting the at least first imaging error by replacing at least one of the first optical elements (36, 38) from the plurality of the optical elements with at least one first optical compensation element. The invention further relates to such an optical system (10, 12) having improved imaging properties (Fig. 1).
    • 本发明涉及一种用于改进的光学系统(10,12)的成像特性的方法。 所述光学系统(10,12)具有多个在所述光学系统(10,12)的图像平面(32)的基板(28)上的光学元件被布置成映射结构(24)。 该方法包括处理步骤(a)中,检测至少一个第一通过加热光学元件中的至少一个(36,38)引起的与时间相关的至少部分可逆的光学系统(10,12)的像差,以及方法步骤(b)中,至少部分地 校正由至少多个光学元件中的第一光学元件(36,38)交换为对至少一个第一光学补偿元件的至少第一图像缺陷。 本发明还涉及这样的光学系统(10,12)具有改善的成像特性(图1)。