会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 22. 发明申请
    • AMPLIFYING CIRCUIT AND METHOD FOR CORRECTING THE PULSE DUTY FACTOR OF A DIFFERENTIAL CLOCK SIGNAL
    • 放大器电路和用于校正差分时钟信号的连续比率的方法
    • WO2006051054A3
    • 2006-08-17
    • PCT/EP2005055691
    • 2005-11-02
    • INFINEON TECHNOLOGIES AGHEYNE PATRICK
    • HEYNE PATRICK
    • H03K5/00H03K5/02H03K5/151H03K5/156H03K5/24
    • H03K5/2481H03K5/151H03K5/1565H03K2005/00228
    • The invention relates to an amplifying circuit and to a method for correcting the pulse duty factor of a differential clock signal (CLt, CLc) to give a desired value of 50 % using a differential amplifier (1) having an MOS transistor pair (T1, T2). According to said method, the clock signal (CLt, CLc) to be corrected is applied to the respective gate of the MOS transistor pair (T1, T2), and a differential analog pulse duty correction signal (DCt, DCc) is produced by respective integration of the true and complementary clock signal (ACLt, ACLc) emitted by every MOS transistor (T1, T2) of the differential amplifier (1) on its source/drain connection. The differential pulse duty correction signal (DCt, DCc) thereby obtained is applied to the respective electrically insulated substrate connections (S1, S2) of the MOS transistor pair (T1, T2) so that the substrate voltages and the cutoff voltages of the MOS transistors (T1, T2) of the transistor pair are influenced in the opposite direction.
    • 本发明涉及一种放大器电路和用于通过一对MOS晶体管的装置校正的差分时钟信号(CLT,CLC),其具有50%的所期望的值的占空比的方法(TL,T2)差动放大器(1)。 在这种情况下,待校正的时钟信号(CLT,CLC)被提供给MOS晶体管对(T1中,T2)中的相应的栅极端子施加,差分模拟Tastverhältniskorrektursignals(DCT DCC)通过的各MOS晶体管的各自的积分(TL,T2) 传递到其源极/漏极中产生(1)真和互补的时钟信号(ACLT,ACLC)差动放大器,因此产生(DCT DCC)的差动Tastverhältniskorrektursignals的终端(在每种情况下,MOS晶体管对的电分离基板端子(SL,S2)T1中, T2),使得在每种情况下,晶体管对的MOS晶体管(T1,T2)的衬底电压以及因此的阈值电压在相反的方向上受到影响。
    • 24. 发明申请
    • LOW-CONSUMPTION VOLTAGE AMPLIFIER
    • 低消耗电压放大器
    • WO2005011104A3
    • 2005-03-31
    • PCT/FR2004050330
    • 2004-07-13
    • COMMISSARIAT ENERGIE ATOMIQUEARQUES MARC
    • ARQUES MARC
    • H03F1/02H03F1/22H03F1/30H03F3/08H03F3/193H03F3/345H03K5/02
    • H03F3/087H03F1/0205H03F1/223H03F1/301H03F3/193H03F3/345H03F2200/48H03F2200/78
    • The invention relates to a low-consumption voltage amplifier. Said amplifier comprises a transistor (M1), a first current generator (I1), supplying the transistor's (M1) drain, a second current generator (I0), charging the transistor's (M1) source, the current provided by the second current generator (I1) being substantially equal to the current provided by the first current generator (I0), a first capacitor (C1), connected to the transistor's (M1) drain and a second capacitor (C0), connected to the transistor's (M1) source. An additional field effect transistor (M3), of a type opposite to that of the first field effect transistor, is arranged between the current generator (I1) and the first field effect transistor (M1). Said invention applies more particularly to the voltage amplification of a X-ray or gamma-ray detector.
    • 本发明涉及一种低功耗电压放大器。 所述放大器包括晶体管(M1),提供晶体管(M1)漏极的第一电流发生器(I1),向晶体管(M1)源充电第二电流发生器(I0)的第二电流发生器(I0) I1)基本上等于由第一电流发生器(I0)提供的电流,连接到晶体管(M1)漏极的第一电容器(C1)和连接到晶体管(M1)源极的第二电容器(C0)。 在电流发生器(I1)和第一场效应晶体管(M1)之间设置与第一场效应晶体管相反的类型的附加场效应晶体管(M3)。 本发明更具体地适用于X射线或γ射线检测器的电压放大。
    • 25. 发明申请
    • AMPLIFIER
    • 放大器
    • WO00077931A1
    • 2000-12-21
    • PCT/EP2000/003629
    • 2000-04-20
    • H03F1/26H03F3/195H03F3/30H03K5/02H03F3/345H03K19/00
    • H03F3/3028H03F1/26H03F2200/372
    • An amplifier circuit comprises a circuit input (14), and a circuit output (22). An inverter, comprising first and second MOS transistors (16, 18) is connected between first and second supply voltages (Vdd, Vss), and has an inverter input connected to the circuit input (14), and an inverter output (20), which provides an inverter output current corresponding to a circuit input voltage. A first resistive element comprises a third MOS transistor (24) and a fourth MOS transistor (26), the third and fourth transistors being of opposite conductivity types, and each having their gate and drain terminals connected to the inverter output (20) and the circuit output (22), and having their respective source terminals connected to respective ones of the first and second supply voltages (Vdd, Vss). A second resistive element comprises a fifth MOS transistor (30) and a sixth MOS transistor (32), the fifth and sixth transistors being of opposite conductivity types, and each having its drain-source path connected between the circuit output (22) and the circuit input (14), and having its gate connected to a respective voltage source (34, 36). The amplifier circuit is suitable for integration using CMOS techniques, and for use at radio frequencies, while providing good performance in terms of its noise figure. Alternative embodiments are disclosed having various combinations of the above components.
    • 放大器电路包括电路输入端(14)和电路输出端(22)。 包括第一和第二MOS晶体管(16,18)的反相器连接在第一和第二电源电压(Vdd,Vss)之间,并且具有连接到电路输入端(14)的反相器输入端和反相器输出端(20), 其提供对应于电路输入电压的逆变器输出电流。 第一电阻元件包括第三MOS晶体管(24)和第四MOS晶体管(26),第三和第四晶体管具有相反的导电类型,并且其栅极和漏极端子连接到逆变器输出端(20),并且 电路输出(22),并且其各自的源极端子连接到第一和第二电源电压(Vdd,Vss)中的相应的一个。 第二电阻元件包括第五MOS晶体管(30)和第六MOS晶体管(32),第五和第六晶体管具有相反的导电类型,并且其漏极源路径连接在电路输出端(22)和 电路输入(14),并且其栅极连接到相应的电压源(34,36)。 放大器电路适用于使用CMOS技术的集成,并且在无线电频率下使用,同时在其噪声系数方面提供良好的性能。 公开了具有上述组件的各种组合的替代实施例。
    • 26. 发明申请
    • HIGH-VOLTAGE CMOS LEVEL SHIFTER
    • 高电压CMOS电平变换器
    • WO98035444A1
    • 1998-08-13
    • PCT/US1998/001298
    • 1998-01-23
    • H03K5/02H03K3/356H03K17/10H03K19/0185
    • H03K17/102H03K3/356113
    • A high-voltage level shifter includes one or more complementary NMOS/PMOS series intermediate transistor pairs (MP1, MN1) to divide the high-voltage supply range into two or more sub-ranges. The level shifter has a differential structure with complementary NMOS input transistors (MNI, M'NI). Cross-coupled PMOS output transistors (MPO, M'PO) provide complementary outputs. The complementary NMOS/PMOS series intermediate transistor pairs separate the NMOS input transistor drains from the PMOS output transistor drains. In order to divide the high voltage range into h subranges, h-1 complementary NMOS/PMOS series intermediate transistor pairs are used each being biased by monotonically increasing fixed intermediate voltages. In a shared-bias embodiment, each complementary NMOS/PMOS series intermediate transistor pair is biased by a single corresponding intermediate voltage. In a split-bias embodiment, each complementary NMOS/PMOS series intermediate transistor pair is biased by a corresponding NMOS bias voltage and a corresponding PMOS bias voltage, in which the NMOS bias voltage is higher than the PMOS bias voltage by the sum or the NMOS threshold voltage and the PMOS threshold voltage. In another aspect, the N-wells of the PMOS transistors are tied to an upwardly vertically adjacent intermediate voltage in the shared-bias embodiments, and are tied to an upwardly vertically adjacent NMOS bias voltage in the split-bias embodiments. In a twin tub embodiment for very high voltage applications, the P-wells of the NMOS transistors are tied to a downwardly vertically adjacent intermediate voltage in the shared-bias embodiments, and are tied to a downwardly vertically adjacent PMOS bias voltage for the split-bias embodiments.
    • 高压电平移位器包括一个或多个互补的NMOS / PMOS串联中间晶体管对(MP1,MN1),以将高电压电源范围分成两个或更多个子范围。 电平移位器具有互补NMOS输入晶体管(MNI,M'NI)的差分结构。 交叉耦合PMOS输出晶体管(MPO,M'PO)提供互补输出。 互补的NMOS / PMOS系列中间晶体管对将NMOS输入晶体管漏极与PMOS输出晶体管漏极分离。 为了将高电压范围划分为h个子范围,使用h-1互补的NMOS / PMOS系列中间晶体管对,通过单调增加固定中间电压来偏置。 在共享偏置实施例中,每个互补NMOS / PMOS系列中间晶体管对由单个对应的中间电压偏置。 在分离偏置实施例中,每个互补NMOS / PMOS串联中间晶体管对由相应的NMOS偏置电压和相应的PMOS偏置电压偏置,其中NMOS偏置电压高于PMOS偏置电压乘以和或NMOS 阈值电压和PMOS阈值电压。 在另一方面,PMOS晶体管的N阱在共享偏压实施例中被连接到向上垂直相邻的中间电压,并且在分离偏压实施例中被连接到向上垂直相邻的NMOS偏置电压。 在用于非常高电压应用的双槽实施例中,NMOS晶体管的P阱在共享偏压实施例中被连接到向下垂直相邻的中间电压,并且被连接到用于分离电压的向下垂直相邻的PMOS偏置电压, 偏压实施例。