会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明授权
    • Crisla process
    • Crisla过程
    • US5883350A
    • 1999-03-16
    • US834095
    • 1997-04-14
    • Jozef W. EerkensDennis G. GarrattBrian C. OlsonKen J. FalkJohn H. Wang
    • Jozef W. EerkensDennis G. GarrattBrian C. OlsonKen J. FalkJohn H. Wang
    • B01D59/18B01D59/34B01D59/50B01D3/00
    • B01D59/18B01D59/34B01D59/50
    • Nozzle cooling and wall contact prevention control are included in a gaseous CRISLA apparatus, along with removable collectors, and the efficient use of one or more currently available high power lasers to produce a commercially economic isotope separation process. The wall contact prevention is accomplished with gaseous boundary layers, and a supersonic nozzle normally is used to cool and separate excitation bands of the isotopic material. Non-intermixing gaseous streams with different isotopic assays can be created in a single nozzle chamber and segmented collection chamber, which along with recirculation loops and compressors, allows a single laser system and a single nozzle system to be used to selectively excite the isotopic material while it makes multiple passes through the laser beams of the laser system until only a small fraction of the desired isotope remains to be separated. The process is especially effective in separating .sup.235 UF.sub.6 from a gaseous mixture of .sup.235 UF.sub.6 and .sup.238 UF.sub.6.
    • 气体冷却和壁接触预防控制包括在气体CRISLA设备中,以及可移除的收集器,以及有效地使用一个或多个当前可用的大功率激光器以产生商业经济的同位素分离过程。 通过气体边界层实现壁接触预防,通常使用超音速喷嘴来冷却和分离同位素材料的激发带。 可以在单个喷嘴室和分段收集室中产生具有不同同位素测定的非混合气流,其与循环回路和压缩机一起可以使用单个激光系统和单个喷嘴系统来选择性地激发同位素材料,同时 它使得多次通过激光系统的激光束,直到只有一小部分所需的同位素保持分离。 该方法在将235UF6与235UF6和238UF6的气体混合物分离时特别有效。
    • 7. 发明授权
    • Method and apparatus for separating isotopes
    • 分离同位素的方法和装置
    • US5653854A
    • 1997-08-05
    • US607467
    • 1996-02-27
    • Goro MiyamotoYoshio MurakamiSeiji HirokiKenji Katsuki
    • Goro MiyamotoYoshio MurakamiSeiji HirokiKenji Katsuki
    • B01D59/34B01D59/48H01J49/26C25B5/00
    • B01D59/34B01D59/48
    • The improved isotope separator comprises a vacuum vessel, a plasma generator located substantially in the center of the vacuum vessel, an electrode bounded by a hyperboloid of one sheet and a pair of electrodes bounded by a hyperboloid of two sheets, said electrodes being located within the vacuum vessel in such a way as to surround the plasma generator, a power source for supplying said electrodes with a fixed voltage and a pulsating voltage, and magnetic field generating means located outside the vacuum vessel. The apparatus is implemented by a method for isotope separation that achieves high separation factor per stage (process), that enables the process throughput to be increased with ease and which yet is applicable to the isotopic separation of many elements.
    • 改进的同位素分离器包括真空容器,基本上位于真空容器中心的等离子体发生器,由一片双曲面界定的电极和由两片双曲面界定的一对电极,所述电极位于 真空容器,以围绕等离子体发生器的方式,用于向固定电压和脉动电压供应所述电极的电源,以及位于真空容器外部的磁场产生装置。 该装置通过一种同步分离方法来实现,该方法在每个阶段达到高的分离因子(工艺),这使得能够容易地提高工艺流程并且还适用于许多元素的同位素分离。
    • 8. 发明授权
    • Method and apparatus for laser isotope separation
    • 激光同位素分离方法和装置
    • US5591947A
    • 1997-01-07
    • US307718
    • 1994-09-21
    • Doros Andreou
    • Doros Andreou
    • B01D59/34B01D5/00
    • B01D59/34
    • A simple system for obtaining high dissociation yield in a single highly selective step, even at very high pumping powers, in the molecular laser isotope separation (MLIS) route of Uranium Hexafluoride (UF.sub.6), is described. In order to selectively excite and dissociate the desired isotope .sup.235 UF.sub.6 two beams with frequencies corresponding to the first and second energy excitation levels of this isotope at .omega..sub.1 =.omega..sub.0 and .omega..sub.2 =.omega..sub.0 +.omega..sub.12 respectively where .omega..sub.12 is the frequency difference between the first and second energy excitation levels, are simultaneously applied to the supercooled Uranium Hexafluoride molecular gas. Special arrangements which involve the perpendicular crossing of two sets of such beams derivable from the same set of collinear beams polarized in the same direction, allow for the supercooled gas to be uniformly illuminated in configurations equivalent to a Mach-Zehnder interferometer with the gas substituted for the position of the reuniting beamsplitter further enhancing the selectivity of the desired isotope. The versatility of the method enables it to be applied to any particular molecular gas with closely spaced isotopes.
    • PCT No.PCT / GB92 / 00552 Sec。 371日期1994年9月21日 102(e)日期1994年9月21日PCT 1992年3月26日PCT公布。 公开号WO93 / 18844 日期1993年9月30日描述了在六氟化铀(UF6)的分子激光同位素分离(MLIS)路线中,即使在非常高的泵浦功率下,在单个高选择性步骤中获得高解离产率的简单系统。 为了选择性地激发和解离期望的同位素235UF6两个波束,其频率对应于ω1 =ω0和ω2 =ω0 +ω12的该同位素的第一和第二能量激发水平,其中ω12是频差 在第一和第二能量激发水平之间,同时施加到过冷六氟化铀分子气体。 涉及垂直交叉的两组这样的光束的特殊装置,这些光束可从相同方向偏振的同一组共线光束衍生出来,允许将过冷气体均匀地照射在与Mach-Zehnder干涉仪相当的结构中,其中气体取代 聚焦分束器的位置进一步提高了所需同位素的选择性。 该方法的多功能性使其能够应用于具有紧密间隔同位素的任何特定分子气体。