会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • SCANNING PROBE MICROSCOPE AND SAMPLE OBSERVING METHOD USING THE SAME
    • 扫描探针显微镜和使用其的样品观察方法
    • US20130145507A1
    • 2013-06-06
    • US13586754
    • 2012-08-15
    • Toshihiko NAKATAMasahiro WATANABETakashi INOUEKishio HIDAKAMotoyuki HIROOKA
    • Toshihiko NAKATAMasahiro WATANABETakashi INOUEKishio HIDAKAMotoyuki HIROOKA
    • G01Q60/18
    • G01Q60/18G01Q60/22
    • In a near-field scanning microscope using an aperture probe, the upper limit of the aperture formation is at most several ten nm in practice. In a near-field scanning microscope using a scatter probe, the resolution ability is limited to at most several ten nm because of the external illuminating light serving as background noise. Moreover, measurement reproducibility is seriously lowered by a damage or abrasion of a probe. Optical data and unevenness data of the surface of a sample can be measured at a nm-order resolution ability and a high reproducibility while damaging neither the probe nor the sample by fabricating a plasmon-enhanced near-field probe having a nm-order optical resolution ability by combining a nm-order cylindrical structure with nm-order microparticles and repeatedly moving the probe toward the sample and away therefrom at a low contact force at individual measurement points on the sample.
    • 在使用孔径探针的近场扫描显微镜中,实际上孔径形成的上限为至多几十nm。 在使用散射探针的近场扫描显微镜中,由于外部照明光作为背景噪声,分辨能力被限制在至多几十nm。 此外,通过探针的损伤或磨损,测量再现性被严重降低。 可以以nm级分辨能力和高再现性测量样品表面的光学数据和不均匀性数据,同时通过制造具有nm级光学分辨率的等离子体增强近场探针而不损害探针和样品 通过将nm级圆柱形结构与nm级微粒组合,并在样品上的各个测量点处以低接触力将探针重复地移动到样品并从中离开它们的能力。
    • 3. 发明申请
    • SCANNING PROBE MICROSCOPE
    • 扫描探针显微镜
    • US20130205454A1
    • 2013-08-08
    • US13726764
    • 2012-12-26
    • Shuichi BABAMasahiro WATANABEToshihiko NAKATAYukio KEMBOToru KURENUMATakafumi MORIMOTOManabu EDAMURASatoshi SEKINO
    • Shuichi BABAMasahiro WATANABEToshihiko NAKATAYukio KEMBOToru KURENUMATakafumi MORIMOTOManabu EDAMURASatoshi SEKINO
    • G01Q10/00
    • G01Q10/00B82Y35/00G01Q60/28G01Q60/34
    • In the case of measuring a pattern having a steep side wall, a probe adheres to the side wall by the van der Waals forces acting between the probe and the side wall when approaching the pattern side wall, and an error occurs in a measured profile of the side wall portion. When a pattern having a groove width almost equal to a probe diameter is measured, the probe adheres to both side walls, the probe cannot reach the groove bottom, and the groove depth cannot be measured. When the probe adheres to a pattern side wall in measurements of a microscopic high-aspect ratio pattern using an elongated probe, the probe is caused to reach the side wall bottom by detecting the adhesion of the probe to the pattern side wall, and temporarily increasing a contact force between the probe and the sample. Also, by obtaining the data of the amount of torsion of a cantilever with the shape data of the pattern, a profile error of the side wall portion by the adhesion is corrected by the obtained data of the amount of torsion.
    • 在测量具有陡峭侧壁的图案的情况下,当接近图案侧壁时,探针通过作用在探针和侧壁之间的范德华力附着在侧壁上,并且在测量的轮廓中发生错误 侧壁部分。 当测量具有几乎等于探针直径的槽宽度的图案时,探针粘附到两个侧壁,探针不能到达凹槽底部,并且不能测量凹槽深度。 当使用细长的探针测量微观高纵横比图案时探头粘附到图案侧壁上时,通过检测探针与图案侧壁的粘附力使探针到达侧壁底部,并暂时增加 探针和样品之间的接触力。 此外,通过利用图案的形状数据获得悬臂的扭转量的数据,通过获得的扭转量的数据来校正侧壁部分的粘附的轮廓误差。
    • 4. 发明申请
    • A SCANNING PROBE MICROSCOPE AND A MEASURING METHOD USING THE SAME
    • 扫描探针显微镜和使用其的测量方法
    • US20110055982A1
    • 2011-03-03
    • US12828590
    • 2010-07-01
    • Masahiro WATANABEShuichi BabaToshihiko Nakata
    • Masahiro WATANABEShuichi BabaToshihiko Nakata
    • G01Q10/02G01Q10/00G01Q10/04
    • G01Q10/02G01Q10/04
    • It is difficult for a scanning probe microscope according to the conventional technology to operate a probe for scanning and positioning in a wide range and for high-precision scanning in a narrow range. A scanning probe microscope according to the invention uses probe driving actuators for coarse adjustment and fine adjustment. For scanning and positioning in a wide range, the coarse adjustment actuator is switched to fast responsiveness. For scanning in a narrow range, the coarse adjustment actuator is switched to slow responsiveness. Instead, positional noise is reduced and the fine adjustment actuator is mainly used for scanning in a narrow range. The probe is capable of not only scanning and positioning in a wide range but also high-precision scanning in a narrow range.
    • 根据传统技术的扫描探针显微镜难以在宽范围内操作用于扫描和定位的探针并且在窄范围内进行高精度扫描。 根据本发明的扫描探针显微镜使用探头驱动致动器进行粗调和微调。 对于广泛的扫描和定位,粗调执行器切换到快速响应。 为了在窄范围内进行扫描,粗调调节执行器被切换为响应速度慢。 相反,位置噪声减小,微调致动器主要用于窄范围的扫描。 该探头不仅可以在很宽的范围内进行扫描和定位,还可以在窄范围内进行高精度扫描。
    • 5. 发明申请
    • SCANNING PROBE MICROSCOPE
    • 扫描探针显微镜
    • US20080257024A1
    • 2008-10-23
    • US12099176
    • 2008-04-08
    • Masahiro WATANABEShuichi BabaToshihiko Nakata
    • Masahiro WATANABEShuichi BabaToshihiko Nakata
    • G01B5/28
    • G01Q70/04G01Q10/06
    • The invention provides a scanning probe microscope capable of performing highly accurate three-dimensional profile measurement in a state in which no sliding of the probe or deformation of the sample substantially occurs. The present invention realizes a highly accurate three-dimensional profile measurement using a scanning probe microscope, in which the method performs measurement to obtain an accurate three-dimensional profile without causing damage to the sample by having the probe contact the sample at the measurement point and then move to a next measurement point, wherein the probe is pulled up and retracted temporarily and then moved to the next measurement point where it is approximated to the sample again, the method comprises analyzing the signals of the contact force sensor so as to obtain the height of the probe at the time when the probe contacts the sample with zero contact force, so as to substantially eliminate errors caused by sliding of the probe and deformation of the sample caused by minute contact force.
    • 本发明提供一种扫描探针显微镜,其能够在不发生探针滑动或样品变形的状态下进行高精度的三维轮廓测量。 本发明使用扫描探针显微镜实现高精度的三维轮廓测量,其中该方法进行测量以获得准确的三维轮廓,而不会通过使探针在测量点处接触样品而使样品受损,并且 然后移动到下一个测量点,其中探针被暂时拉起和缩回,然后移动到下一个测量点,在该测量点近似于样品,该方法包括分析接触力传感器的信号,以获得 当探针以零接触力与样品接触时,探针的高度,从而基本上消除了探针的滑动和由微小的接触力导致的样品变形所引起的误差。
    • 10. 发明申请
    • COMMUNICATION CONTROL APPRATUS AND METHOD
    • 通信控制设备和方法
    • US20090104911A1
    • 2009-04-23
    • US12253279
    • 2008-10-17
    • Masahiro WATANABEMakoto Yoshida
    • Masahiro WATANABEMakoto Yoshida
    • H04W36/00
    • H04W36/30H04B7/15507H04W84/005H04W88/08
    • A communication control apparatus that is applied to a wireless communication system in which a mobile terminal can be connected to a fixed base station through a wireless connection to a relay station that is mounted on a moving body, wherein the communication control apparatus includes a detecting unit that detects a change, associated with movement of the moving body on which the relay station is mounted, of a communication environment between the mobile terminal and the relay station, a control unit that controls a handover of the mobile terminal according to the change, detected by the detecting unit, of communication environment between the mobile terminal and the relay station.
    • 一种应用于无线通信系统的通信控制装置,其中移动终端可以通过无线连接与固定基站连接到安装在移动体上的中继站,其中通信控制装置包括检测单元 检测与所述移动终端与所述中继站之间的通信环境相关联的与所述中继站所在的移动体的移动相关联的变化,控制单元,其根据所述变化来控制所述移动终端的切换; 由检测单元检测移动终端与中继站之间的通信环境。