会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明授权
    • Silicon semiconductor substrate and method of fabricating the same
    • 硅半导体基板及其制造方法
    • US5894037A
    • 1999-04-13
    • US749649
    • 1996-11-15
    • Hiroaki KikuchiSeiichi Shishiguchi
    • Hiroaki KikuchiSeiichi Shishiguchi
    • H01L21/322B05D3/02
    • H01L21/3221Y10S148/06Y10S148/147Y10T428/31663
    • A silicon semiconductor substrate including a silicon semiconductor layer at one of upper and lower surfaces thereof, the silicon semiconductor layer being composed of polysilicon or noncrystal silicon and containing oxygen in the range of 2 atomic % to 20 atomic % both inclusive, nitrogen in the range of 4 atomic % to 20 atomic % both inclusive, or both nitrogen at 2 atomic % or greater and oxygen at 1 atomic % or greater. The polysilicon or noncrystal silicon semiconductor layer acts as a core for extrinsic gettering. In the silicon semiconductor substrate, the gettering performance is not deteriorated, even if the silicon semiconductor substrate experiences thermal treatment. Thus, it is possible to get rid of contamination caused by heavy metals in the silicon semiconductor substrate.
    • 一种硅半导体衬底,包括在其上表面和下表面中的一个上的硅半导体层,所述硅半导体层由多晶硅或非晶硅构成,并且包含在2原子%至20原子%范围内的氧,范围内的氮 为4原子%以上且20原子%以下的氮,2原子%以上的氮和1原子%以上的氧。 多晶硅或非晶硅半导体层作为外部吸气的核心。 在硅半导体基板中,即使硅半导体基板经受热处理,吸气性能也不会劣化。 因此,能够消除硅半导体基板中的重金属引起的污染。
    • 7. 发明授权
    • Method for manufacturing a semiconductor device
    • 半导体器件的制造方法
    • US6010914A
    • 2000-01-04
    • US958666
    • 1997-10-28
    • Seiichi Shishiguchi
    • Seiichi Shishiguchi
    • H01L21/20H01L21/205H01L21/66H01L23/544G01R31/26
    • H01L22/34H01L22/12
    • A method for manufacturing a semiconductor device comprises the steps of forming consecutively a silicon oxide layer and a test epitaxial layer in a test pattern area on a silicon wafer, forming an epitaxial layer in a product area for semiconductor devices and on the test epitaxial layer simultaneously, measuring a total thickness of the epitaxial layer and the test epitaxial layer formed in the test pattern area by infrared interference, and determining the thickness of the epitaxial layer formed in the product area based on the total thickness to control the thickness of the epitaxial layer in the product area. A thickness control for a very thin epitaxial layer can be obtained.
    • 一种制造半导体器件的方法包括以下步骤:在硅晶片的测试图形区域中连续地形成氧化硅层和测试外延层,在半导体器件的产品区域和测试外延层上同时形成外延层 通过红外干涉测量在测试图形区域中形成的外延层和测试外延层的总厚度,并且基于总厚度确定在产品区域中形成的外延层的厚度以控制外延层的厚度 在产品领域。 可以获得非常薄的外延层的厚度控制。
    • 9. 发明授权
    • Semiconductor memory device having trench isolation regions and bit
lines formed thereover
    • 具有形成在其上的沟槽隔离区域和位线的半导体存储器件
    • US5798544A
    • 1998-08-25
    • US242345
    • 1994-05-13
    • Shuichi OhyaMasato SakaoYoshihiro TakaishiKiyonori KajiyanaTakeshi AkimotoShizuo OguroSeiichi Shishiguchi
    • Shuichi OhyaMasato SakaoYoshihiro TakaishiKiyonori KajiyanaTakeshi AkimotoShizuo OguroSeiichi Shishiguchi
    • H01L27/10H01L21/8242H01L27/108H01L29/76
    • H01L27/10823H01L27/10808
    • Disclosed herein is a semiconductor memory device including a plurality of memory cells each includes an active region which is defined in a column direction by a pair of trench isolation regions formed in a semiconductor substrate and in a row direction by an isolation gate conductor lines formed on a first gate insulating film covering the substrate, a source and a drain region selectively formed in the active region to define a channel region of a cell transistor, a second gate insulating film formed on the channel region, a word line formed on the second gate insulating film, a first insulating film covering the active region and the word line, a bit line formed on the first insulating film to overlap with the isolation gate conductor, a bit line connection conductor formed in the first insulating film to connect the drain region to the bit line with being in contact with the sidewall surface of the bit line, a second insulating film covering the bit line and the first insulating film, and a storage capacitor having a capacitor electrode connected to the source region through a contact hole provided in the first and second insulating film.
    • 这里公开了一种半导体存储器件,其包括多个存储单元,每个存储单元包括有源区,该有源区通过在半导体衬底中形成的一对沟槽隔离区而在列方向上限定,并且在行方向上由隔离栅导体线形成 覆盖基板的第一栅极绝缘膜,选择性地形成在有源区中的源极和漏极区域,以限定单元晶体管的沟道区,形成在沟道区上的第二栅极绝缘膜,形成在第二栅极上的字线 绝缘膜,覆盖有源区和字线的第一绝缘膜,形成在第一绝缘膜上以与隔离栅导体重叠的位线;形成在第一绝缘膜中的位线连接导体,以将漏区连接到 位线与位线的侧壁表面接触,覆盖位线的第二绝缘膜和第一绝缘f 以及具有通过设置在第一和第二绝缘膜中的接触孔连接到源极区的电容器电极的存储电容器。
    • 10. 发明授权
    • Fabrication method of semiconductor device using selective epitaxial growth
    • 使用选择性外延生长的半导体器件的制造方法
    • US06190976B1
    • 2001-02-20
    • US09198763
    • 1998-11-24
    • Seiichi ShishiguchiTomoko Yasunaga
    • Seiichi ShishiguchiTomoko Yasunaga
    • H01L21336
    • H01L29/665H01L29/41783H01L29/456H01L29/4941
    • A fabrication method of a semiconductor device with an IGFET is provided, which makes it possible to decrease the current leakage due to electrical short-circuit between a gate electrode and source/drain regions of the IGFET through conductive grains deposited on its dielectric sidewalls. After the basic structure of the IGFET is formed, first and second single-crystal Si epitaxial layers are respectively formed on the first and second source/drain regions by a selective epitaxial growth process. Then, the surface areas of the first and second single-crystal Si epitaxial layers are oxidized, and the oxidized surface areas of the first and second single-crystal Si epitaxial layers are removed by etching. If unwanted grains of poly-Si or amorphous Si are grown on the first and second dielectric sidewalls in the selective epitaxial growth process, the unwanted grains are oxidized and removed, thereby preventing electrical short-circuit from occurring between the gate electrode and the first and second source/drain regions through the unwanted grains deposited on the first and second dielectric sidewalls.
    • 提供了具有IGFET的半导体器件的制造方法,这使得可以通过沉积在其电介质侧壁上的导电晶粒来减小由IGFET的栅极电极和源极/漏极区域之间的电短路引起的电流泄漏。 在形成IGFET的基本结构之后,通过选择性外延生长工艺在第一和第二源/漏区上分别形成第一和第二单晶Si外延层。 然后,第一和第二单晶Si外延层的表面积被氧化,并且通过蚀刻去除第一和第二单晶Si外延层的氧化表面积。 如果在选择性外延生长工艺中在多晶硅或非晶Si的不想要的晶粒生长在第一和第二电介质侧壁上,则不需要的晶粒被氧化和去除,从而防止在栅电极和第一和第二电介质侧壁之间发生电短路 通过沉积在第一和第二电介质侧壁上的不需要的晶粒的第二源/漏区。