会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • On-chip polarimetry for high-throughput screening of nanoliter and smaller sample volumes
    • 用于高通量筛选纳升和较小样品体积的片上偏振法
    • US08134707B2
    • 2012-03-13
    • US11666046
    • 2005-10-24
    • Darryl J. BornhopStephen DotsonBrian O. Bachmann
    • Darryl J. BornhopStephen DotsonBrian O. Bachmann
    • G01J4/00
    • G01J4/04G01N21/21
    • A polarimetry technique for measuring optical activity that is particularly suited for high throughput screening employs a chip or substrate (22) having one or more microfluidic channels (26) formed therein. A polarized laser beam (14) is directed onto optically active samples that are disposed in the channels. The incident laser beam interacts with the optically active molecules in the sample, which slightly alter the polarization of the laser beam as it passes multiple times through the sample. Interference fringe patterns (28) are generated by the interaction of the laser beam with the sample and the channel walls. A photodetector (34) is positioned to receive the interference fringe patterns and generate an output signal that is input to a computer or other analyzer (38) for analyzing the signal and determining the rotation of plane polarized light by optically active material in the channel from polarization rotation calculations.
    • 特别适用于高通量筛选的用于测量光学活性的偏振测定技术采用在其中形成有一个或多个微流体通道(26)的芯片或衬底(22)。 偏振激光束(14)被引导到设置在通道中的光学活性样品上。 入射激光束与样品中的光学活性分子相互作用,当样品经过多次时,激光束的极化稍微改变。 干涉条纹图案(28)通过激光束与样品和通道壁的相互作用产生。 定位光电检测器(34)以接收干涉条纹图案并产生输入到计算机或其他分析器(38)的输出信号,用于分析信号并通过光通道材料在通道中确定平面偏振光的旋转, 极化旋转计算。
    • 3. 发明申请
    • Analysis of membrane component interactions
    • 膜组分相互作用分析
    • US20100291700A1
    • 2010-11-18
    • US12799689
    • 2010-04-28
    • Scot WeinbergerStephen DotsonNathan Harris
    • Scot WeinbergerStephen DotsonNathan Harris
    • G01N21/00G01N30/96
    • G01N33/54393G01N21/45G01N33/5432G01N33/54373G01N33/92
    • Devices and methods for detecting interaction between components associated with lipid membranes and analytes are described herein. In certain methods, a surface of a compartment of a device is coated with a material that attaches to lipid membrane from a sample. An analyte is introduced and interaction is detected, for example, by back scattering interferometry. In another method, a surface is passivated with a material that does not bind a lipid membrane. A sample is introduced that contains a membrane comprising a component for testing and an analyte. Interaction is detected. In a third method, a channel is filled with a first liquid that does not comprise a lipid membrane. A bolus of a second liquid that comprises a membrane comprising a component for testing and an analyte is introduced under laminar flow conditions so that a leading edge of the second liquid does not completely displace the first liquid in a sensing area that is interrogated by optical methods, for example, a laser. Interaction between the analyte and the component is detected.
    • 本文描述了用于检测与脂质膜和分析物相关的组分之间相互作用的装置和方法。 在某些方法中,装置的隔室的表面涂覆有从样品附着到脂质膜的材料。 引入分析物并检测相互作用,例如通过反向散射干涉测量。 在另一种方法中,用不结合脂质膜的材料钝化表面。 引入了包含含有用于测试的组分和分析物的膜的样品。 检测到相互作用。 在第三种方法中,通道填充有不包含脂质膜的第一液体。 在层流条件下引入包括包含用于测试的组分的膜和分析物的第二液体的推注,使得第二液体的前缘不会在通过光学方法询问的感测区域中完全置换第一液体 ,例如,激光。 检测分析物与组分之间的相互作用。
    • 4. 发明授权
    • Method for detecting binding interactions between membrane proteins and analytes in a homogenous assay
    • 用于在同源测定中检测膜蛋白和分析物之间的结合相互作用的方法
    • US08450118B2
    • 2013-05-28
    • US12799689
    • 2010-04-28
    • Scot WeinbergerStephen DotsonNathan Harris
    • Scot WeinbergerStephen DotsonNathan Harris
    • G01N33/00G01N21/75
    • G01N33/54393G01N21/45G01N33/5432G01N33/54373G01N33/92
    • Devices and methods for detecting interaction between components associated with lipid membranes and analytes are described herein. In certain methods, a surface of a compartment of a device is coated with a material that attaches to lipid membrane from a sample. An analyte is introduced and interaction is detected, for example, by back scattering interferometry. In another method, a surface is passivated with a material that does not bind a lipid membrane. A sample is introduced that contains a membrane comprising a component for testing and an analyte. Interaction is detected. In a third method, a channel is filled with a first liquid that does not comprise a lipid membrane. A bolus of a second liquid that comprises a membrane comprising a component for testing and an analyte is introduced under laminar flow conditions so that a leading edge of the second liquid does not completely displace the first liquid in a sensing area that is interrogated by optical methods, for example, a laser. Interaction between the analyte and the component is detected.
    • 本文描述了用于检测与脂质膜和分析物相关的组分之间相互作用的装置和方法。 在某些方法中,装置的隔室的表面涂覆有从样品附着到脂质膜的材料。 引入分析物并检测相互作用,例如通过反向散射干涉测量。 在另一种方法中,用不结合脂质膜的材料钝化表面。 引入了包含含有用于测试的组分和分析物的膜的样品。 检测到相互作用。 在第三种方法中,通道填充有不包含脂质膜的第一液体。 在层流条件下引入包括包含用于测试的组分的膜和分析物的第二液体的推注,使得第二液体的前缘不会在通过光学方法询问的感测区域中完全置换第一液体 ,例如,激光。 检测分析物与组分之间的相互作用。
    • 5. 发明申请
    • Methods and systems for interferometric analysis
    • 用于干涉测量分析的方法和系统
    • US20100188665A1
    • 2010-07-29
    • US12655898
    • 2010-01-08
    • Stephen DotsonKirk C. Odencrantz
    • Stephen DotsonKirk C. Odencrantz
    • G01N21/41
    • G01N21/45
    • This invention provides methods and devices for analyzing interference patterns. The methods include fitting a Gaussian distribution to a cross correlation of two patterns from interferometric analysis of a liquid at a first and second time; identifying a positional shift of the pattern by comparing a selected value of the Gaussian distributions of the pattern at the first and second times; and determining a change in refractive index of the liquid from the positional shift. In another aspect, a method of extending the dynamic range of an interferometric data set is provided that comprises linearizing the data set, for example, using the arcsine function.
    • 本发明提供了用于分析干扰图案的方法和装置。 所述方法包括:在第一和第二时间从液体的干涉测量分析中拟合两个模式的互相关的高斯分布; 通过在第一次和第二次比较图案的高斯分布的选定值来识别图案的位置偏移; 以及从位置偏移确定液体的折射率变化。 在另一方面,提供一种扩展干涉测量数据集的动态范围的方法,其包括例如使用反正弦函数线性化数据集。
    • 6. 发明申请
    • On-Chip Polarimetry for High-Throughput Screening of Nanoliter and Smaller Sample Volumes
    • 用于高通量筛选纳升级和较小样品体积的片上偏振镜
    • US20100027008A1
    • 2010-02-04
    • US11666046
    • 2005-10-24
    • Daryl J. BornhopStephen DotsonBrian O. Bachmann
    • Daryl J. BornhopStephen DotsonBrian O. Bachmann
    • G01J4/00
    • G01J4/04G01N21/21
    • A polarimetry technique for measuring optical activity that is particularly suited for high throughput screening employs a chip or substrate (22) having one or more microfluidic channels (26) formed therein. A polarized laser beam (14) is directed onto optically active samples that are disposed in the channels. The incident laser beam interacts with the optically active molecules in the sample, which slightly alter the polarization or the loser beam as it passes multiple times through the sample. Interference fringe patters (28) are generated by the interaction of the laser beam with the sample and the channel walls. A photodetector (34) is positioned to receive the interference fringe patterns and generate an output signal that is input to a computer or other analyzer (38) for analyzing the signal and determining the rotation of plane polarized light by optically active material in the channel from polarization rotation calculations.
    • 特别适用于高通量筛选的用于测量光学活性的偏振测定技术采用在其中形成有一个或多个微流体通道(26)的芯片或衬底(22)。 偏振激光束(14)被引导到设置在通道中的光学活性样品上。 入射激光束与样品中的光学活性分子相互作用,当样品经过多次时,其稍微改变偏振或失败光束。 干涉条纹图案(28)通过激光束与样品和通道壁的相互作用产生。 定位光电检测器(34)以接收干涉条纹图案并产生输入到计算机或其他分析器(38)的输出信号,用于分析信号并通过光通道材料在通道中确定平面偏振光的旋转, 极化旋转计算。