会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • SILICIDE CAP STRUCTURE AND PROCESS FOR REDUCED STRESS AND IMPROVED GATE SHEET RESISTANCE
    • 减少应力和改进的栅格电阻的硅胶结构和工艺
    • US20080020535A1
    • 2008-01-24
    • US11866751
    • 2007-10-03
    • Levent GulariKevin MelloRobert PurtellYun-Yu WangKeith Wong
    • Levent GulariKevin MelloRobert PurtellYun-Yu WangKeith Wong
    • H01L21/336H01L21/44
    • H01L21/28052H01L21/28114H01L21/28518H01L29/665
    • A silicide cap structure and method of fabricating a silicide cap having a low sheet resistance. The method provides a semiconductor substrate and a MOSFET structure comprising a gate insulator on the substrate, an Si-containing gate electrode on the gate insulator layer, and source/drain diffusions. Atop the gate electrode and source/drain diffusions is formed a layer of metal used in forming a silicide region atop the transistor gate electrode and diffusions; an intermediate metal barrier layer formed atop the silicide forming metal layer; and, an oxygen barrier layer formed atop the intermediate metal barrier layer. As a result of annealing the MOSFET structure, resulting formed silicide regions exhibit a lower sheet resistance. As the intermediate metal barrier layer comprises a material exhibiting tensile stress, the oxygen barrier layer may comprise a compressive material for minimizing a total mechanical stress of the cap structure and underlying layers during the applied anneal.
    • 一种硅化物盖结构和制造具有低薄层电阻的硅化物盖的方法。 该方法提供半导体衬底和MOSFET结构,其包括在衬底上的栅极绝缘体,栅极绝缘体层上的含Si栅极电极和源极/漏极扩散。 在栅电极和源极/漏极扩散之上形成用于在晶体管栅极顶部形成硅化物区域和扩散的金属层; 形成在所述硅化物形成金属层顶上的中间金属阻挡层; 以及形成在中间金属阻挡层顶上的氧阻隔层。 作为对MOSFET结构进行退火的结果,所形成的形成的硅化物区域具有较低的薄层电阻。 当中间金属阻挡层包括显示拉伸应力的材料时,氧阻挡层可以包括用于在施加的退火期间最小化盖结构和下层的总机械应力的压缩材料。
    • 4. 发明申请
    • SILICIDE CAP STRUCTURE AND PROCESS FOR REDUCED STRESS AND IMPROVED GATE SHEET RESISTANCE
    • 减少应力和改进的栅格电阻的硅胶结构和工艺
    • US20060163671A1
    • 2006-07-27
    • US10905949
    • 2005-01-27
    • Levent GulariKevin MelloRobert PurtellYun-Yu WangKeith Wong
    • Levent GulariKevin MelloRobert PurtellYun-Yu WangKeith Wong
    • H01L29/76H01L29/94H01L31/062H01L31/113H01L31/119
    • H01L21/28052H01L21/28114H01L21/28518H01L29/665
    • A suicide cap structure and method of fabricating a suicide cap having a low sheet resistance. The method provides a semiconductor substrate and a MOSFET structure comprising a gate insulator on the substrate, an Si-containing gate electrode on the gate insulator layer, and source/drain diffusions. Atop the gate electrode and source/drain diffusions is formed a layer of metal used in forming a silicide region atop the transistor gate electrode and diffusions; an intermediate metal barrier layer formed atop the silicide forming metal layer; and, an oxygen barrier layer formed atop the intermediate metal barrier layer. As a result of annealing the MOSFET structure, resulting formed silicide regions exhibit a lower sheet resistance. As the intermediate metal barrier layer comprises a material exhibiting tensile stress, the oxygen barrier layer may comprise a compressive material for minimizing a total mechanical stress of the cap structure and underlying layers during the applied anneal.
    • 一种自杀帽结构和制造具有低薄层阻力的自杀帽的方法。 该方法提供半导体衬底和MOSFET结构,其包括在衬底上的栅极绝缘体,栅极绝缘体层上的含Si栅极电极和源极/漏极扩散。 在栅电极和源极/漏极扩散之上形成用于在晶体管栅极顶部形成硅化物区域和扩散的金属层; 形成在所述硅化物形成金属层顶上的中间金属阻挡层; 以及形成在中间金属阻挡层顶上的氧阻隔层。 作为对MOSFET结构进行退火的结果,所形成的形成的硅化物区域具有较低的薄层电阻。 当中间金属阻挡层包括显示拉伸应力的材料时,氧阻挡层可以包括用于在施加的退火期间最小化盖结构和下层的总机械应力的压缩材料。
    • 9. 发明申请
    • METHOD AND APPARATUS FOR FORMING NICKEL SILICIDE WITH LOW DEFECT DENSITY IN FET DEVICES
    • 在FET器件中形成具有低缺陷密度的镍硅氧烷的方法和装置
    • US20070077760A1
    • 2007-04-05
    • US11163038
    • 2005-10-03
    • Keith WongRobert Purtell
    • Keith WongRobert Purtell
    • H01L21/44
    • H01L21/28518C23C14/16C23C14/32C23C14/345H01L21/28052H01L21/2855H01L29/66507H01L29/78
    • A method and apparatus are provided in which non-directional and directional metal (e.g. Ni) deposition steps are performed in the same process chamber. A first plasma is formed for removing material from a target; a secondary plasma for increasing ion density in the material is formed in the interior of an annular electrode (e.g. a Ni ring) connected to an RF generator. Material is deposited non-directionally on the substrate in the absence of the secondary plasma and electrical biasing of the substrate, and deposited directionally when the secondary plasma is present and the substrate is electrically biased. Nickel silicide formed from the deposited metal has a lower gate polysilicon sheet resistance and may have a lower density of pipe defects than NiSi formed from metal deposited in a solely directional process, and has a lower source/drain contact resistance than NiSi formed from metal deposited in a solely non-directional process.
    • 提供了一种方法和装置,其中在相同的处理室中执行非定向和定向金属(例如Ni)沉积步骤。 形成第一等离子体以从靶中去除材料; 在连接到RF发生器的环形电极(例如Ni环)的内部形成用于增加材料中的离子密度的二次等离子体。 在不存在基板的二次等离子体和电偏置的情况下,材料被非定向地沉积在基板上,并且当存在二次等离子体并且基板被电偏置时定向沉积材料。 由沉积金属形成的硅化镍具有较低的栅极多晶硅薄层电阻,并且可能具有比仅在单向定向工艺中沉积的金属形成的NiSi更低的管缺陷密度,并且具有比由金属沉积形成的NiSi更低的源/漏接触电阻 在一个单一的无方向的过程。
    • 10. 发明申请
    • AIR BREAK FOR IMPROVED SILICIDE FORMATION WITH COMPOSITE CAPS
    • 用于改进硅酸盐形成与复合CAPS的空气破裂
    • US20070161240A1
    • 2007-07-12
    • US11306719
    • 2006-01-09
    • Robert PurtellKeith Wong
    • Robert PurtellKeith Wong
    • H01L21/44
    • H01L21/28518H01L29/665H01L29/7833
    • Disclosed is a structure and method for tuning silicide stress and, particularly, for developing a tensile silicide region on a gate conductor of an n-FET in order to optimize n-FET performance. More particularly, a first metal layer-protective cap layer-second metal layer stack is formed on an n-FET structure. However, prior to the deposition of the second metal layer, the protective layer is exposed to air. This air break step alters the adhesion between the protective cap layer and the second metal layer and thereby, effects the stress imparted upon the first metal layer during silicide formation. The result is a more tensile silicide that is optimal for n-FET performance. Additionally, the method allows such a tensile silicide region to be formed using a relatively thin first metal layer-protective cap layer-second metal layer stack, and particularly, a relatively thin second metal layer, to minimize mechanical energy build up at the junctions between the gate conductor and the sidewall spacers to avoid silicon bridging.
    • 公开了一种用于调整硅化物应力的结构和方法,特别是用于在n-FET的栅极导体上形成拉伸硅化物区域,以优化n-FET性能。 更具体地,在n-FET结构上形成第一金属层保护盖层 - 第二金属层堆叠。 然而,在沉积第二金属层之前,保护层暴露于空气中。 这种空气破碎步骤改变了保护盖层和第二金属层之间的粘附,从而在硅化物形成期间实现施加在第一金属层上的应力。 结果是对于n-FET性能最佳的更强的硅化物。 此外,该方法允许使用相对较薄的第一金属层 - 保护层 - 第二金属层堆叠形成这种拉伸硅化物区域,特别是相对较薄的第二金属层,以最小化在 栅极导体和侧壁间隔件,以避免硅桥接。