会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Solar cell and method for manufacturing the same
    • 太阳能电池及其制造方法
    • US6023020A
    • 2000-02-08
    • US950204
    • 1997-10-14
    • Mikihiko NishitaniTakayuki NegamiNaoki KoharaTakahiro WadaYasuhiro Hashimoto
    • Mikihiko NishitaniTakayuki NegamiNaoki KoharaTakahiro WadaYasuhiro Hashimoto
    • H01L31/032H01L31/0336
    • H01L31/0749H01L31/0322Y02E10/541
    • A solar cell utilizing a chalcopyrite semiconductor and reducing the density of defects on the junction interface of pn junctions is provided. This solar cell includes a substrate, a back electrode formed on the substrate, a p-type chalcopyrite semiconductor thin film formed on the back electrode, an n-type semiconductor thin film formed so as to constitute a pn junction with the p-type chalcopyrite semiconductor thin film, and a transparent electrode formed on the n-type semiconductor thin film. A material having a higher resistivity than the p-type chalcopyrite semiconductor is formed between the p-type chalcopyrite semiconductor thin film and the n-type semiconductor thin film. A thin film made of this material may be formed by deposition from a solution. For example, CuInS.sub.2 is formed on the surface of a p-type chalcopyrite based semiconductor such as CuInSe.sub.2 by contacting the surface of the semiconductor with a solution in which a salt containing group IIIb elements, an organic substance containing group VIb elements and acid are mixed.
    • 提供了利用黄铜矿半导体并降低pn结的结界面上的缺陷密度的太阳能电池。 该太阳能电池包括基板,形成在基板上的背面电极,形成在背面电极上的p型黄铜矿半导体薄膜,形成为与p型黄铜矿形成pn结的n型半导体薄膜 半导体薄膜和形成在n型半导体薄膜上的透明电极。 在p型黄铜矿半导体薄膜和n型半导体薄膜之间形成具有比p型黄铜矿半导体更高的电阻率的材料。 由该材料制成的薄膜可以通过从溶液中沉积而形成。 例如,通过使半导体的表面与含有IIIb族元素的盐,含有VIb族元素的有机物质和酸混合的溶液与CuInSe 2的p型黄铜矿类半导体的表面形成CuInS 2, 。
    • 5. 发明授权
    • Thin film solar cell and method for manufacturing the same
    • 薄膜太阳能电池及其制造方法
    • US5858121A
    • 1999-01-12
    • US712025
    • 1996-09-11
    • Takahiro WadaMikihiko NishitaniNaoki Kohara
    • Takahiro WadaMikihiko NishitaniNaoki Kohara
    • H01L31/04H01L31/032H01L31/0336
    • H01L31/0749H01L31/0322Y02E10/541Y02P70/521
    • A thin film solar cell having high conversion efficiency is provided. The band gap of the thin film solar cell can be controlled while keeping the quality superior to conventional solar cells. The absorber layer for photovoltaic energy conversion is a Cu(In.sub.1-X Ga.sub.X)(Se.sub.1-Y S.sub.Y).sub.2 based solid solution where X and Y are in the range of the following Equation:0.317+0.176Y.gtoreq.X.gtoreq.0.117+0.176Y1>X+Y>0Y>0,The Cu(In.sub.1-X Ga.sub.X)(Se.sub.1-Y S.sub.Y).sub.2 based solid solution has a specific chalcopyrite type crystal structure and its lattice constant ratio of c-axis to a-axis is extremely close to two. It is most preferable that the band gap is 1.4 eV, X is 0.3, and Y is 0.4, since the conversion efficiency of a homojunction solar cell will then become a maximum.
    • 提供了具有高转换效率的薄膜太阳能电池。 可以在保持质量优于常规太阳能电池的同时控制薄膜太阳能电池的带隙。 用于光能转换的吸收层是基于Cu(In1-XGaX)(Se1-YSY)2)的固溶体,其中X和Y在以下等式的范围内:0.317 + 0.176Y> / = X> / = 0.117+ 0.176Y 1> X + Y> 0 Y> 0,Cu(In1-XGaX)(Se1-YSY)2系固溶体具有特定的黄铜矿型晶体结构,其c轴与a轴的晶格常数比为 非常接近两个。 最优选的是,带隙为1.4eV,X为0.3,Y为0.4,因为同功型太阳能电池的转换效率将变得最大。