会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Optical measuring device
    • 光学测量装置
    • US07911610B2
    • 2011-03-22
    • US11996057
    • 2006-01-17
    • Naoji MoriyaYuzo NagumoYukihisa WadaNaofumi SakauchiFujio InoueMasahiro TakebeKenji TakuboShinichiro Totoki
    • Naoji MoriyaYuzo NagumoYukihisa WadaNaofumi SakauchiFujio InoueMasahiro TakebeKenji TakuboShinichiro Totoki
    • G01N21/00
    • G01N15/0211G01N21/4788G01N2021/1721
    • The present invention relates to an optical measuring device which includes container for storing a sample, and an electrode pair for generating an electric field distribution upon impression of a voltage by an electrical power supply, thereby generating or extinguishing diffraction grating formed by a density modulation of particles within the sample. The particles within the sample are evaluated based upon a temporal change of an intensity of a diffracted light beam obtained by irradiating a light beam upon the diffraction grating formed by the density modulation of the particles. The electrodes constituting the electrode pair are configured to have a comb-like electrode teeth that are parallel with each other and are arranged such that the electrode teeth of one electrode are inserted between the electrode teeth of the other electrode. From such configuration, an optical measuring device of a high sensitivity and excellent S/N ratio can be obtained.
    • 本发明涉及一种光学测量装置,该光学测量装置包括用于存储样品的容器和用于通过电源印制电压而产生电场分布的电极对,由此产生或熄灭由密度调制形成的衍射光栅 样品内的颗粒。 基于通过对通过颗粒的密度调制形成的衍射光栅照射光束而获得的衍射光束的强度的时间变化来评估样品内的颗粒。 构成电极对的电极被构造为具有彼此平行的梳状电极齿,并且被布置成使得一个电极的电极齿插入另一个电极的电极齿之间。 由此,可以得到灵敏度高,S / N比优异的光学测量装置。
    • 2. 发明申请
    • OPTICAL MEASURING DEVICE
    • 光学测量装置
    • US20090251695A1
    • 2009-10-08
    • US11996057
    • 2006-01-17
    • Naoji MoriyaYuzo NagumoYukihisa WadaNaofumi SakauchiFujio InoueMasahiro TakebeKenji TakuboShinichiro Totoki
    • Naoji MoriyaYuzo NagumoYukihisa WadaNaofumi SakauchiFujio InoueMasahiro TakebeKenji TakuboShinichiro Totoki
    • G01N15/02G01N21/47
    • G01N15/0211G01N21/4788G01N2021/1721
    • Within a container 1 which is storing a sample is generated a regularly arranged electric field distribution by an impression of a voltage upon an electrode pair 2 provided within the container 1, thereby generating diffraction grating formed by a density modulation of particles within the sample within the container 1, there is obtained information upon a diffusion of the particles based upon a temporal change in an extinction process of an intensity of a diffracted light beam obtained by irradiating a light beam upon the diffraction grating formed by the density modulation of the particles, the electrodes 21, 22 constituting the electrode pair 2 are configured to have multiple linear electrode teeth 21a, 22a parallel with each other, the electrodes 21, 22 are arranged such that the electrode teeth 21a of one electrode 21 are inserted between the electrode teeth 22a of the other electrode 22, thereby increasing the width of the diffraction grating formed by the density modulation of the particles, and a ratio of a component of the diffracted light beam thereof included in an entire diffracted light beam is increased to increase sensitivity of a measurement. As a result, there is provided an optical measuring device which can measure the information upon the diffusion of the particles movably dispersed within a medium at a high sensitivity and with an excellent S/N ratio.
    • 在存储样品的容器1内通过设置在容器1内的电极对2上的电压印制产生规则排列的电场分布,从而产生通过在样品内的颗粒的密度调制形成的衍射光栅 容器1根据粒子的密度调制形成的衍射光栅照射光束而获得的衍射光束的强度的消光处理中的时间变化,获得了粒子扩散的信息, 构成电极对2的电极21,22被配置为具有彼此平行的多个线状电极齿21a,22a,电极21,22被布置成使得一个电极21的电极齿21a插入到电极齿22a 另一个电极22,从而增加由t的密度调制形成的衍射光栅的宽度 并且包括在整个衍射光束中的衍射光束的分量的比率增加,以增加测量的灵敏度。 结果,提供了一种光学测量装置,其可以以高灵敏度和良好的S / N比来测量可移动地分散在介质中的颗粒的扩散的信息。
    • 3. 发明申请
    • Optical Measuring Device and Method, and Nanoparticle Measuring Method and Device
    • 光学测量装置及方法及纳米粒子测量方法及装置
    • US20080192252A1
    • 2008-08-14
    • US11661492
    • 2005-07-15
    • Naoji MoriyaShinichiro TotokiYuzo NagumoYukihisa WadaNaofumi SakauchiFujio InoueMasahiro TakebeMakiko Masutomi
    • Naoji MoriyaShinichiro TotokiYuzo NagumoYukihisa WadaNaofumi SakauchiFujio InoueMasahiro TakebeMakiko Masutomi
    • G01N21/00
    • G01N21/4788G01N15/0211G01N15/0227G01N2013/003G01N2015/0038G01N2015/0294
    • The invention provides an optical measuring device capable of performing measuring using a transient diffraction grating by only adjusting probe light, and a nanoparticle measuring device using the same principle as the optical measuring device. An optical measuring device includes: a power supply 15; a container 11 that stores a sample; a pair of electrodes 13 and 14 that generate an electric force line distribution in which areas having high electric force line density and areas having low electric force line density are regularly arranged; a dielectrophoresis control unit 19 that controls the generation of a transient diffraction grating using dielectrophoresis of particles in the sample caused by applying the voltage to the pair of electrodes 13 and 14 and a variation in the transient diffraction grating due to the diffusion of the particles in the sample according to a variation in the applied voltage; a light source 16 emitting light to the transient diffraction grating; and a plurality of photodetectors 18 detecting diffracted light generated by the transient diffraction grating. In the optical measuring device, the particles are evaluated on the basis of a variation in the intensity of the diffracted light generated by the transient diffraction grating. Further, for example, the particle diameter of a nanoparticle is measured by the same principle as the optical measuring device uses. As a result, it is possible to increase the intensity of a signal and to improve the sensitivity and the S/N ratio, as compared to a dynamic scattering method.
    • 本发明提供一种光学测量装置,该光学测量装置能够仅通过调节探测光来进行使用瞬态衍射光栅的测量,以及使用与光学测量装置相同原理的纳米粒子测量装置。 光学测量装置包括:电源15; 存储样品的容器11; 产生电力线分布的一对电极13,14,其中规定排列具有高电力线密度的区域和具有低电力线密度的区域; 介电电泳控制单元19,其使用通过向一对电极13和14施加电压引起的样品中的颗粒的介电电泳,以及由于颗粒的扩散引起的瞬态衍射光栅的变化来控制瞬态衍射光栅的产生 样品根据施加电压的变化; 将光发射到瞬态衍射光栅的光源16; 以及检测由瞬变衍射光栅产生的衍射光的多个光检测器18。 在光学测量装置中,基于由瞬变衍射光栅产生的衍射光的强度的变化来评估颗粒。 此外,例如,通过与光学测量装置使用的原理相同的原理来测量纳米颗粒的粒径。 结果,与动态散射方法相比,可以增加信号的强度并提高灵敏度和S / N比。
    • 4. 发明授权
    • Optical measuring device and method, and nanoparticle measuring method and device
    • 光学测量装置及方法及纳米颗粒测量方法及装置
    • US07760356B2
    • 2010-07-20
    • US11661492
    • 2005-07-15
    • Naoji MoriyaShinichro TotokiYuzo NagumoYukihisa WadaNaofumi SakauchiFujio InoueMasahiro TakebeMakiko Masutomi
    • Naoji MoriyaShinichro TotokiYuzo NagumoYukihisa WadaNaofumi SakauchiFujio InoueMasahiro TakebeMakiko Masutomi
    • G01N15/02
    • G01N21/4788G01N15/0211G01N15/0227G01N2013/003G01N2015/0038G01N2015/0294
    • The invention provides an optical measuring device capable of performing measuring using a transient diffraction grating by only adjusting probe light, and a nanoparticle measuring device using the same principle as the optical measuring device. An optical measuring device includes: a power supply 15; a container 11 that stores a sample; a pair of electrodes 13 and 14 that generate an electric force line distribution in which areas having high electric force line density and areas having low electric force line density are regularly arranged; a dielectrophoresis control unit 19 that controls the generation of a transient diffraction grating using dielectrophoresis of particles in the sample caused by applying the voltage to the pair of electrodes 13 and 14 and a variation in the transient diffraction grating due to the diffusion of the particles in the sample according to a variation in the applied voltage; a light source 16 emitting light to the transient diffraction grating; and a plurality of photodetectors 18 detecting diffracted light generated by the transient diffraction grating. In the optical measuring device, the particles are evaluated on the basis of a variation in the intensity of the diffracted light generated by the transient diffraction grating. Further, for example, the particle diameter of a nanoparticle is measured by the same principle as the optical measuring device uses. As a result, it is possible to increase the intensity of a signal and to improve the sensitivity and the S/N ratio, as compared to a dynamic scattering method.
    • 本发明提供一种光学测量装置,该光学测量装置能够仅通过调节探测光来进行使用瞬态衍射光栅的测量,以及使用与光学测量装置相同原理的纳米粒子测量装置。 光学测量装置包括:电源15; 存储样品的容器11; 产生电力线分布的一对电极13,14,其中规定排列具有高电力线密度的区域和具有低电力线密度的区域; 介电电泳控制单元19,其使用通过向一对电极13和14施加电压引起的样品中的颗粒的介电电泳,以及由于颗粒的扩散引起的瞬态衍射光栅的变化来控制瞬态衍射光栅的产生 样品根据施加电压的变化; 将光发射到瞬态衍射光栅的光源16; 以及检测由瞬变衍射光栅产生的衍射光的多个光检测器18。 在光学测量装置中,基于由瞬变衍射光栅产生的衍射光的强度的变化来评估颗粒。 此外,例如,通过与光学测量装置使用的原理相同的原理来测量纳米颗粒的粒径。 结果,与动态散射方法相比,可以增加信号的强度并提高灵敏度和S / N比。
    • 7. 发明申请
    • Gas Concentration Measurement Device
    • 气体浓度测量装置
    • US20120188549A1
    • 2012-07-26
    • US13189303
    • 2011-07-22
    • Yousuke HoshinoKenji TakuboNaoji Moriya
    • Yousuke HoshinoKenji TakuboNaoji Moriya
    • G01N21/00
    • G01N21/3504G01N21/39
    • A gas concentration measurement device which utilizes a TDLAS measurement method, and in which the phase-sensitive detection can be performed by digital processing using an integer-arithmetic device, is provided. In the gas concentration measurement device according to the present invention, AC components corresponding to integer multiples of a modulation frequency f contained in an input signal are removed by taking a moving average of data obtained from an output signal of a multiplier 62 for a period of time corresponding to one cycle of the modulation frequency f. As a result, a DC component in the output signal of a digital filter 63 relatively increases, making it easier to extract the DC component by a digital low-pass filter 64, so that a sufficiently accurate phase-sensitive detection can be made even if a digital processing based on integer arithmetic is used.
    • 提供一种利用TDLAS测量方法的气体浓度测量装置,并且其中可以通过使用整数运算装置的数字处理来执行相位敏感检测。 在根据本发明的气体浓度测量装置中,通过从乘法器62的输出信号获得的数据的移动平均值去除与输入信号中包含的调制频率f的整数倍相对应的AC分量, 时间对应于调制频率f的一个周期。 结果,数字滤波器63的输出信号中的DC分量相对增加,使得更容易通过数字低通滤波器64提取DC分量,从而即使可以进行足够精确的相敏检测 使用基于整数运算的数字处理。
    • 8. 发明授权
    • Gas concentration measurement device
    • 气体浓度测量装置
    • US08508739B2
    • 2013-08-13
    • US13189303
    • 2011-07-22
    • Yousuke HoshinoKenji TakuboNaoji Moriya
    • Yousuke HoshinoKenji TakuboNaoji Moriya
    • G01N21/59
    • G01N21/3504G01N21/39
    • A gas concentration measurement device which utilizes a TDLAS measurement method, and in which the phase-sensitive detection can be performed by digital processing using an integer-arithmetic device, is provided. In the gas concentration measurement device according to the present invention, AC components corresponding to integer multiples of a modulation frequency f contained in an input signal are removed by taking a moving average of data obtained from an output signal of a multiplier 62 for a period of time corresponding to one cycle of the modulation frequency f . As a result, a DC component in the output signal of a digital filter 63 relatively increases, making it easier to extract the DC component by a digital low-pass filter 64, so that a sufficiently accurate phase-sensitive detection can be made even if a digital processing based on integer arithmetic is used.
    • 提供一种利用TDLAS测量方法的气体浓度测量装置,并且其中可以通过使用整数运算装置的数字处理来执行相位敏感检测。 在根据本发明的气体浓度测量装置中,通过从乘法器62的输出信号获得的数据的移动平均值去除与输入信号中包含的调制频率f的整数倍相对应的AC分量, 时间对应于调制频率f的一个周期。 结果,数字滤波器63的输出信号中的DC分量相对增加,使得更容易通过数字低通滤波器64提取DC分量,从而即使可以进行足够精确的相敏检测 使用基于整数运算的数字处理。
    • 9. 发明申请
    • METHOD AND APPARATUS FOR OPTICAL MEASUREMENT
    • 用于光学测量的方法和装置
    • US20100149532A1
    • 2010-06-17
    • US12600649
    • 2007-05-18
    • Naoji Moriya
    • Naoji Moriya
    • G01N15/02G01N21/47
    • G01N11/00G01N13/00G01N2011/008G01N2013/003G01N2015/0038G01N2015/0216
    • In the case of generating a diffraction grating resulting from the density distribution of particles by applying a spatially periodic electric field to a sample having particles dispersed movably in a medium, measuring diffracted light obtained by exposing the diffraction grating to a parallel light flux, and calculating the diffusion coefficient and/or size of the particles from the temporal change in the intensity of the diffracted light, the diffraction grating is exposed to multiple types of parallel light fluxes having mutually different wavelengths simultaneously or sequentially, the diffracted light is measured separately for each wavelength, and the measurement results are used selectively for calculation of the diffusion coefficient and/or size of the particles, and whereby the measurement can be carried out accurately without being affected by a plasmon resonance phenomenon even for metal particles.
    • 在通过对具有可移动地分散在介质中的颗粒的样品施加空间周期性电场而产生由颗粒的密度分布产生的衍射光栅的情况下,测量通过将衍射光栅曝光到平行光通量而获得的衍射光,并计算 从衍射光强度的时间变化引起的粒子的扩散系数和/或尺寸,衍射光栅同时或顺序地暴露于具有相互不同波长的多种平行光束,衍射光分别测量 波长,并且测量结果被选择性地用于计算颗粒的扩散系数和/或尺寸,并且由此即使对于金属颗粒也不会受到等离子体共振现象的影响,可以精确地进行测量。
    • 10. 发明申请
    • METHOD OF ANALYSIS IN OPTICAL MEASUREMENTS
    • 光学测量中的分析方法
    • US20090128809A1
    • 2009-05-21
    • US12281097
    • 2006-02-28
    • Naoji Moriya
    • Naoji Moriya
    • G01N15/02G01N21/17
    • G01N15/0211G01N21/4788G01N2011/008G01N2015/0216
    • The method of the present invention generates a regularly lined electric field inside a container 1 retaining a sample formed by dispersing particle groups in a liquid by a voltage being applied to an electrode pair 2 provided in the container 1, generates a diffraction grating by a density distribution of the particle groups in the sample inside the container 1, and when acquiring a diffusion coefficient of particles from a temporal variation of intensity in a disappearing process of a diffracted light obtained by irradiating a beam of light to the diffraction grating generated by the density distribution of the particle groups, performs a particle size analysis of the particle groups by using an approximate analysis expression of a diffracted light attenuation, I(t)=∝exp[−2q2Dt] which uses q=2π/Λ defined by a particle concentration modulation period Λ in the density distribution diffraction grating of the particle groups, and the Einstein-Stokes relation. And if particle groups having a known particle size are dispersed in a liquid to be measured and similar measurements are performed, viscosity analysis of the liquid to be measured can be performed.
    • 本发明的方法在容器1内部产生规则排列的电场,该容器1保持通过施加到设置在容器1中的电极对2的电压将颗粒群分散在液体中而形成的样品,通过密度产生衍射光栅 在容器1内的样品中的粒子群的分布,并且当通过将光束照射到由密度产生的衍射光栅获得的衍射光的消失过程中从强度的时间变化中获得粒子的扩散系数时 通过使用由粒子浓度定义的q = 2pi /λλ的衍射光衰减I(t)=αexp[-2q2Dt]的近似分析表达式,对粒子群的分布进行粒子群的粒度分析 粒子群密度分布衍射光栅中的调制周期Lambda以及爱因斯坦 - 斯托克斯关系。 如果将具有已知粒径的粒子分散在被测定液体中,进行同样的测定,则可以进行待测液体的粘度分析。