会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Advanced small pixel high fill factor uncooled focal plane array
    • 先进的小像素高填充因子非冷却焦平面阵列
    • US6144030A
    • 2000-11-07
    • US959143
    • 1997-10-28
    • Michael RayMichael D. JackWilliam A. RadfordDaniel F. Murphy
    • Michael RayMichael D. JackWilliam A. RadfordDaniel F. Murphy
    • G01J5/20
    • G01J5/20
    • A microbolometer detector element (10) for a focal plane array is provided including an optically absorptive material structure (12) characterized by an electrical resistivity that varies as a function of its temperature coupled in spaced relation to a thermal isolation structure (20). The thermal isolation structure (20) is coupled in spaced relation to a sensor (34) connected to the optically absorptive material structure (12) for sensing the absorptive structure's (12) electrical resistivity. The thermal isolation structure (20) facilitates very high fill factors even when the pixel size is shrunk below the baseline fifty micron size. The thickness of the optically absorptive material structure (12) and the thermal isolation structure (20) can be independently controlled since the thermal isolation structure (20) is disposed in spaced relation under the absorptive material structure (12). The thermal isolation structure (20) can be made several times longer than prior art designs to increase the thermal isolation of the optically absorptive material structure (12) and to increase pixel responsivity. The thermal isolation structure (20) may include a planar member (26) for reflecting incident optical radiation not absorbed by the absorptive material (12) back to the absorptive material (12). In a preferred embodiment of the present invention, the absorptive structure (12) is a polycrystalline semiconductive layer supported above the thermal isolation structure (20) by downwardly projecting leg members (18). The thermal isolation structure (20) also includes downwardly projecting leg members (28) for supporting it in spaced relation above a silicon substrate surface (30) overlying an integrated readout circuit (34).
    • 提供了一种用于焦平面阵列的微辐射热计检测器元件(10),其包括光学吸收材料结构(12),其特征在于电阻率随着其与热隔离结构(20)间隔开的关系而变化。 热隔离结构(20)以与光学吸收材料结构(12)连接的传感器(34)间隔开来耦合,用于感测吸收结构(12)的电阻率。 即使当像素尺寸缩小到基线五十微米尺寸以下时,热隔离结构(20)也有助于非常高的填充因子。 光吸收材料结构(12)和热隔离结构(20)的厚度可以被独立地控制,因为热隔离结构(20)以间隔关系设置在吸收材料结构(12)下。 热隔离结构(20)可以比现有技术的设计长几倍,以增加光吸收材料结构(12)的热隔离并增加像素响应度。 热隔离结构(20)可以包括用于将未被吸收材料(12)吸收的入射光辐射反射回吸收材料(12)的平面构件(26)。 在本发明的优选实施例中,吸收结构(12)是通过向下突出的腿部构件(18)而支撑在热隔离结构(20)上方的多晶半导体层。 热隔离结构(20)还包括向下突出的腿部构件(28),用于以覆盖集成读出电路(34)的硅衬底表面(30)上方间隔开地支撑它们。
    • 2. 发明授权
    • Method and apparatus providing focal plane array active thermal control elements
    • 提供焦平面阵列有源热控元件的方法和装置
    • US06649913B1
    • 2003-11-18
    • US10084687
    • 2002-02-26
    • Adam M. KennedyMichael RayRichard H. WylesJessica K. WylesWilliam A. Radford
    • Adam M. KennedyMichael RayRichard H. WylesJessica K. WylesWilliam A. Radford
    • G01J500
    • G01J5/061G01J5/20H04N5/33
    • A focal plane array (FPA) of infrared (IR) radiation detectors (20), such as an array of microbolometers, includes an active area (20A) containing a plurality of IR radiation detectors, a readout integrated circuit (ROIC) (12) that is mechanically and electrically coupled to the active area and, disposed on the ROIC, a plurality of heater elements (30A) that are located and operated so as to provide a substantially uniform thermal distribution across at least the active area. The FPA further includes a plurality of temperature sensors (30B), individual ones of which are spatially associated with one of the heater elements for sensing the temperature in the vicinity of the associated heater element for providing closed loop operation of the associated heater element. In one embodiment pairs of the heater elements and associated temperature sensors are distributed in a substantially uniform manner across at least a top or a bottom surface of the ROIC, while in another embodiment pairs of the heater elements and associated temperature sensors, or only the heater elements, are distributed in accordance with a predetermined thermal profile of the FPA. The plurality of heater elements may each be composed of a silicon resistance, and the plurality of temperature sensors may each be each composed of a silicon temperature sensor.
    • 红外线(IR)辐射探测器(20)的焦平面阵列(FPA),例如微电流计阵列,包括一个包含多个红外辐射探测器的有源区域(20A),一个读出集成电路(ROIC) 机械地和电耦合到有源区域,并且设置在ROIC上,多个加热器元件(30A)被定位和操作以便在至少有效区域上提供基本均匀的热分布。 FPA还包括多个温度传感器(30B),其中单独的温度传感器在空间上与一个加热器元件相关联,用于感测相关联的加热器元件附近的温度,以提供相关加热器元件的闭环操作。 在一个实施例中,成对的加热器元件和相关联的温度传感器以基本上均匀的方式分布在ROIC的至少顶部或底部表面上,而在另一个实施例中,加热器元件和相关联的温度传感器对,或仅加热器 元件,根据FPA的预定热剖面分布。 多个加热器元件可以各自由硅电阻组成,并且多个温度传感器可以各自由硅温度传感器组成。
    • 3. 发明授权
    • Integrated IR, visible and NIR sensor and methods of fabricating same
    • 集成IR,可见光和近红外传感器及其制造方法
    • US5808350A
    • 1998-09-15
    • US778934
    • 1997-01-03
    • Michael D. JackMichael RayRichard H. Wyles
    • Michael D. JackMichael RayRichard H. Wyles
    • G01J5/10G01J5/34H01L27/146H01L37/02H01L31/0256H01L27/148H01L31/0232
    • H01L37/02G01J5/10G01J5/34H01L27/14652
    • An imaging device (10) has a plurality of unit cells that contribute to forming an image of a scene. The imaging device includes a layer of semiconductor material (16), for example silicon, that has low noise photogate charge-mode readout circuitry (20, 21, 26, 28) (e.g., CCD or CMOS readout circuitry and structures) that is disposed upon a first surface (18) of the layer. A second, opposing surface of the layer is a radiation admitting surface of the layer. The layer has a bandgap selected for absorbing electromagnetic radiation having wavelengths shorter than about one micrometer and for generating charge carriers from the absorbed radiation. The generated charge carriers are collected by the photogate charge-mode readout circuitry. A thermal sensing element (22) is disposed above and is thermally isolated from the first surface of the layer. The thermal sensing element may be, by example, one of a bolometer element, a pyroelectric element, or a thermopile element. A layer (12) of narrower bandgap semiconductor material can also be employed with this invention, wherein the layer of narrower bandgap semiconductor material (such as InGaAs or HgCdTe) is atomically bonded to the second surface along a heterojunction interface that is continuous or apertured across the second surface. The bonded layer is used to absorb NIR and visible light.
    • 成像装置(10)具有有助于形成场景图像的多个单位单元。 该成像装置包括半导体材料层(16),例如硅,其具有低噪声光栅充电模式读出电路(20,21,26,28)(例如,CCD或CMOS读出电路和结构),其被布置 在该层的第一表面(18)上。 层的第二相对表面是该层的辐射入射表面。 该层具有选择用于吸收波长短于约一微米的电磁辐射的带隙,并用于从吸收的辐射产生电荷载流子。 产生的电荷载流子由光栅充电模式读出电路收集。 热敏元件(22)设置在层的第一表面的上方并与之隔离。 热敏元件可以是例如测辐射热计元件,热电元件或热电堆元件之一。 窄带隙半导体材料的层(12)也可以用于本发明,其中较窄带隙半导体材料(例如InGaAs或HgCdTe)的层沿着连续或有孔跨越的异质结界面原子键合到第二表面 第二个表面。 接合层用于吸收近红外和可见光。
    • 6. 发明授权
    • Architecture and method of coupling electromagnetic energy to thermal detectors
    • 将电磁能耦合到热探测器的结构和方法
    • US06329655B1
    • 2001-12-11
    • US09414989
    • 1999-10-07
    • Michael D. JackMichael RayJohn VaresiJan GrinbergHarold FettermanFranklin A. Dolezal
    • Michael D. JackMichael RayJohn VaresiJan GrinbergHarold FettermanFranklin A. Dolezal
    • G01J500
    • G01J5/02G01J5/023G01J5/08G01J5/0837G01J5/20H01Q1/22H01Q9/28H01Q21/24
    • A radiation sensor. The inventive sensor has a two-level detector structure formed on a substrate in which a thermal detector element is suspended over the substrate as a microbridge structure. A receiver of electromagnetic radiation is provided on the same side of the substrate in a manner that efficiently couples the radiation field to the thermal detector element. The thermal detector element has a sandwich structure including a heater metal layer, a dielectric layer, and a thin film thermo-resistive material. The thermal detector element is suspended out of physical contact with the receiver. In one embodiment, the receiver is an antenna having a crossed bowtie configuration that efficiently couples the radiation field to the detector element. The inventive radiation sensors are especially useful for mm-wave and microwave sensing applications. The sensor can be used individually or in linear or two-dimensional arrays thereof. The invention also is directed to a method of fabricating such a radiation sensor.
    • 辐射传感器。 本发明的传感器具有形成在基板上的两级检测器结构,其中热探测器元件作为微桥结构悬挂在基板上。 将电磁辐射的接收器以有效地将辐射场耦合到热检测器元件的方式设置在基板的相同侧上。 热检测器元件具有包括加热器金属层,电介质层和薄膜耐热材料的夹层结构。 热探测器元件与接收器物理接触被暂停。 在一个实施例中,接收机是具有交叉的弓形结构的天线,其将辐射场有效地耦合到检测器元件。 本发明的辐射传感器对于毫米波和微波感测应用特别有用。 传感器可以单独使用或以其线性或二维阵列使用。 本发明还涉及一种制造这种辐射传感器的方法。
    • 7. 发明授权
    • Solder paste stencil manufacturing system
    • 焊膏模板制造系统
    • US07003871B2
    • 2006-02-28
    • US10677640
    • 2003-10-01
    • Michael Ray
    • Michael Ray
    • H01R43/00
    • H05K3/1225H05K1/0269H05K3/1233H05K2203/107H05K2203/163Y10T29/49117Y10T29/49124Y10T29/49126Y10T29/49128Y10T29/4913Y10T29/49135Y10T29/49144Y10T29/49155Y10T29/49204
    • A method and apparatus for manufacturing or assembling a plurality of printed circuit boards to reduce rework at a printed circuit board assembly facility, which may include the following: cutting a first solder paste stencil based on a first solder paste stencil data set on a solder paste stencil cutting machine or device; utilizing the first stencil to apply solder paste to a first printed circuit board at a manufacturing or assembly facility; identifying a solder paste error condition with solder paste error information on the first printed circuit board; transmitting the solder paste error information for remote analysis; generating an adjusted first data set; transmitting the adjusted first data set to the printed circuit board manufacturing or assembly facility; utilizing the adjusted first data set to cut another solder paste stencil based on the adjusted stencil data; and utilizing the adjusted first solder paste stencil to manufacture a second printed circuit board without the solder paste error condition.
    • 一种用于制造或组装多个印刷电路板以减少印刷电路板组装设备的返工的方法和装置,其可以包括以下步骤:基于在焊膏上设置的第一焊膏模版数据来切割第一焊膏模版 模切机或设备; 利用第一模板在制造或组装设施中将焊膏施加到第一印刷电路板; 在第一印刷电路板上识别焊膏误差信息,焊膏误差信息; 发送用于远程分析的焊膏错误信息; 生成调整后的第一数据集; 将经调整的第一数据集发送到印刷电路板制造或组装设施; 利用经调整的第一数据集,根据经调整的模板数据切割另一焊膏模版; 并利用调整后的第一焊锡膏模板制造第二印刷电路板,而没有焊膏错误状况。