会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Method and apparatus for thin film deposition using an active shutter
    • 使用主动快门进行薄膜沉积的方法和装置
    • US06444103B1
    • 2002-09-03
    • US09662575
    • 2000-09-15
    • Mehrdad M. MoslehiYong Jin LeeCecil J. DavisAjit P. Paranjpe
    • Mehrdad M. MoslehiYong Jin LeeCecil J. DavisAjit P. Paranjpe
    • C23C1434
    • H01J37/3447C23C14/3464C23C14/564
    • Material is deposited from an active shutter onto a substrate located in a processing chamber housing with a shutter target coupled to a shutter target assembly. A first target assembly located in the housing supports a target for physical-vapor deposition of a first material onto the substrate. A shutter is selectively moveable to extend into a closed or activated position and to retract into an open position. The shutter target assembly is coupled to the shutter such that when the shutter is in the closed position, the shutter target assembly is positioned to allow deposition of material from the shutter target onto the substrate. When the shutter is in the open position, the first target is positioned to deposit material onto the substrate. Alternating layers of materials may be deposited by the shutter target and first target by cycling the shutter between an open position and a closed position.
    • 材料从活动快门沉积到位于处理室壳体中的基板上,其中快门目标件联接到快门目标组件。 位于壳体中的第一目标组件支撑用于将第一材料物理 - 气相沉积到衬底上的靶。 快门选择性地可移动以延伸到关闭或启动位置并缩回到打开位置。 快门目标组件联接到快门,使得当快门处于关闭位置时,快门目标组件被定位成允许材料从快门目标物体沉积到基板上。 当快门处于打开位置时,第一目标定位成将材料沉积到基板上。 通过在打开位置和关闭位置之间循环活门,可以通过快门目标和第一目标来沉积材料的交替层。
    • 4. 发明授权
    • Apparatus and method for multi-target physical-vapor deposition of a multi-layer material structure
    • 多层材料结构的多目标物理气相沉积的装置和方法
    • US06905578B1
    • 2005-06-14
    • US09067143
    • 1998-04-27
    • Mehrdad M. MoslehiCecil J. DavisChristopher J. MannDwain R. JakubikAjit P. Paranjpe
    • Mehrdad M. MoslehiCecil J. DavisChristopher J. MannDwain R. JakubikAjit P. Paranjpe
    • C23C14/56C23C14/34C23C16/00
    • C23C14/568
    • An apparatus and method for depositing plural layers of materials on a substrate within a single vacuum chamber allows high-throughput deposition of structures such as these for GMR and MRAM application. An indexing mechanism aligns a substrate with each of plural targets according to the sequence of the layers in the structure. Each target deposits material using a static physical-vapor deposition technique. A shutter can be interposed between a target and a substrate to block the deposition process for improved deposition control. The shutter can also preclean a target or the substrate and can also be used for mechanical chopping of the deposition process. In alternative embodiments, plural substrates may be aligned sequentially with plural targets to allow simultaneous deposition of plural structures within the single vacuum chamber. A monitoring and control device can be wed to optimize equipment state, process state, and wafer state parameters by sensing each respective state during or after the deposition process.
    • 用于在单个真空室内的衬底上沉积多层材料的装置和方法允许诸如这些结构的高通量沉积用于GMR和MRAM应用。 分度机构根据结构中的层序列将衬底与多个靶中的每一个对准。 每个目标使用静态物理气相沉积技术沉积材料。 可以在目标和基板之间插入快门以阻止沉积工艺以改善沉积控制。 快门还可以预清洁目标物或基底,并且还可用于沉积过程的机械切割。 在替代实施例中,多个基板可以与多个靶顺序对准,以允许在单个真空室内同时沉积多个结构。 可以通过在沉积过程中或之后感测每个相应的状态来优化设备状态,过程状态和晶片状态参数的监控和控制设备。
    • 7. 发明授权
    • Multi-point semiconductor wafer fabrication process temperature control
system
    • 多点半导体晶圆制造工艺温度控制系统
    • US5508934A
    • 1996-04-16
    • US237971
    • 1994-05-04
    • Mehrdad M. MoslehiHabib N. Najm
    • Mehrdad M. MoslehiHabib N. Najm
    • G01J5/00G01S5/06
    • G01J5/0003
    • A computer controlled system for real-time control of semiconductor wafer fabrication process uses a multi-point, real-time, non-invasive, in-situ pyrometry-based temperature sensor with emissivity compensation to produce semiconductor wafer reflectance, transmittance, and radiant heat energy measurements. The temperature values that the sensor determines are true temperatures for various points on the wafer. The process control computer stores surface roughness values for the semiconductor wafer being examined. The surface roughness values are produced by surface roughness sensor that makes non-invasive and in-situ measurements. The surface roughness sensor performs roughness measurements of the semiconductor wafer based on coherent reflectance and scatter reflectance of the wafer. Based on surface roughness measurements, the process control computer can use the real-time, in-situ measurements of the multi-point pyrometry-based sensor to obtain real-time measurements of time wafer temperature distribution. By associating a multi-zone lamp module having a real-time controller with the present invention a feedback circuit is provided for real-time precision semiconductor wafer process control.
    • 用于半导体晶片制造过程的实时控制的计算机控制系统使用具有发射率补偿的多点,实时,非侵入性的基于高温测量的温度传感器来产生半导体晶圆的反射率,透射率和辐射热 能量测量。 传感器确定的温度值是晶圆上各个点的真实温度。 过程控制计算机存储正在检查的半导体晶片的表面粗糙度值。 表面粗糙度值由表面粗糙度传感器产生,可进行非侵入性和原位测量。 表面粗糙度传感器基于晶片的相干反射率和散射反射率执行半导体晶片的粗糙度测量。 基于表面粗糙度测量,过程控制计算机可以使用基于多点高温测量的传感器的实时,原位测量来获得时间晶片温度分布的实时测量。 通过将具有实时控制器的多区域灯模块与本发明相关联,提供了用于实时精密半导体晶片工艺控制的反馈电路。
    • 8. 发明授权
    • Multi-point pyrometry with real-time surface emissivity compensation
    • 多点高温测量与实时表面发射率补偿
    • US5255286A
    • 1993-10-19
    • US911609
    • 1992-07-10
    • Mehrdad M. MoslehiHabib N. Najm
    • Mehrdad M. MoslehiHabib N. Najm
    • G01J5/00G01J5/08G01J5/10
    • G01J5/0003G01J5/0007G01J5/08G01J5/0806G01J5/0821G01J5/0834G01J5/0862G01J5/0868G01J5/0896G01J2005/0051G01J5/061
    • A multi-point non-invasive, real-time pyrometry-based temperature sensor (200) for simultaneously sensing semiconductor wafer (22) temperature and compensating for wafer emissivity effects. The pyrometer (200) measures the radiant energy that a heated semiconductor wafer (22) emits and coherent beams of light (224) that the semiconductor wafer (22) reflects. As a result, the sensor (200) generates accurate, high-resolution multi-point measurements of semiconductor wafer (22) temperature during a device fabrication process. The pyrometer (200) includes an infrared laser source (202) that directs coherent light beam (203) into beam splitter (204). From the beam splitter (204), the coherent light beam (203) is split into numerous incident coherent beams (210). Beams (210) travel via optical fiber bundles (218) to the surface of semiconductor wafer (22) within the fabrication reactor (80). Each optical fiber bundle (218) collects reflected coherent light beam and radiant energy from wafer (22). Reflected coherent light beam (226) and radiant energy (222) is directed to a detector (240) for detecting signals and recording radiance, emissivity, and temperature values. Multiple optical fiber bundles (218) may be used in the sensor (200) for high spatial resolution multi-point measurements of wafer (22) temperature for precision real-time process control and uniformity optimizations.
    • 一种用于同时感测半导体晶片(22)温度并补偿晶片辐射效应的多点非侵入式实时基于高温测量的温度传感器(200)。 高温计(200)测量加热的半导体晶片(22)发射的辐射能量和半导体晶片(22)反射的相干的光束(224)。 结果,传感器(200)在器件制造过程中产生半导体晶片(22)温度的准确的高分辨率多点测量。 高温计(200)包括将相干光束(203)引导到分束器(204)中的红外激光源(202)。 从分束器(204),相干光束(203)被分成许多入射相干光束(210)。 光束(210)通过光纤束(218)行进到制造反应器(80)内的半导体晶片(22)的表面。 每个光纤束(218)从晶片(22)收集反射的相干光束和辐射能。 反射相干光束(226)和辐射能(222)被引导到用于检测信号和记录辐射度,发射率和温度值的检测器(240)。 可以在传感器(200)中使用多个光纤束(218),用于晶片(22)温度的高空间分辨率多点测量,用于精确实时过程控制和均匀性优化。
    • 9. 发明授权
    • Multi-point pyrometry with real-time surface emissivity compensation
    • 多点高温测量与实时表面发射率补偿
    • US5156461A
    • 1992-10-20
    • US702646
    • 1991-05-17
    • Mehrdad M. MoslehiHabib N. Najm
    • Mehrdad M. MoslehiHabib N. Najm
    • G01J5/00G01J5/08
    • G01J5/0003G01J5/00G01J5/0007G01J5/08G01J5/0806G01J5/0821G01J5/0834G01J5/0862G01J5/0868G01J5/0896G01J2005/0051G01J2005/0074G01J5/061
    • A multi-point non-invasive, real-time pyrometry-based temperature sensor (200) for simultaneously sensing semiconductor wafer (22) temperature and compensating for wafer emissivity effects. The pyrometer (200) measures the radiant energy that a heated semiconductor wafer (22) emits and coherent beams of light (224) that the semiconductor wafer (22) reflects. As a result, the sensor (200) generates accurate, high-resolution multi-point measurements of semiconductor wafer (22) temperature during a device fabrication process. The pyrometer (200) includes an infrared laser source (202) that directs coherent light beam (203) into beam splitter (204). From the beam splitter (204), the coherent light beam (203) is split into numerous incident coherent beams (210). Beams (210) travel via optical fiber bundles (218) to the surface of semiconductor wafer (22) within the fabrication reactor (80). Each optical fiber bundle (218) collects reflected coherent light beam and radiant energy from wafer (22). Reflected coherent light beam (226) and radiant energy (222) is directed to a detector (240) for detecting signals and recording radiance, emissivity, and temperature values. Multiple optical fiber bundles (218) may be used in the sensor (200) for high spatial resolution multi-point measurements of wafer (22) temperature for precision real-time process control and uniformity optimizations.
    • 一种用于同时感测半导体晶片(22)温度并补偿晶片辐射效应的多点非侵入式实时基于高温测量的温度传感器(200)。 高温计(200)测量加热的半导体晶片(22)发射的辐射能量和半导体晶片(22)反射的相干的光束(224)。 结果,传感器(200)在器件制造过程中产生半导体晶片(22)温度的准确的高分辨率多点测量。 高温计(200)包括将相干光束(203)引导到分束器(204)中的红外激光源(202)。 从分束器(204),相干光束(203)被分成许多入射相干光束(210)。 光束(210)通过光纤束(218)行进到制造反应器(80)内的半导体晶片(22)的表面。 每个光纤束(218)从晶片(22)收集反射的相干光束和辐射能。 反射相干光束(226)和辐射能(222)被引导到用于检测信号和记录辐射度,发射率和温度值的检测器(240)。 可以在传感器(200)中使用多个光纤束(218),用于晶片(22)温度的高空间分辨率多点测量,用于精确实时过程控制和均匀性优化。