会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Heat shielding member of silicon single crystal pulling system
    • 硅单晶拉制系统的隔热构件
    • US07294203B2
    • 2007-11-13
    • US10527566
    • 2003-09-12
    • Kazuhiro HaradaYoji SuzukiSenlin FuHisashi FuruyaHidenobu Abe
    • Kazuhiro HaradaYoji SuzukiSenlin FuHisashi FuruyaHidenobu Abe
    • C30B35/00
    • C30B29/06C30B15/14C30B15/203Y10T117/1068Y10T117/1072Y10T117/1076Y10T117/1088
    • A heat shielding member is provided in a device pulling up a silicon single crystal rod from a silicon melt stored in a quartz crucible, and equipped with a tube portion which shields radiant heat from the heater surrounding the outer peripheral face of the silicon single crystal rod, a swelling portion provided at the lower portion of the tube portion, and a ring-shape heat accumulating portion provided at the inside of the swelling portion. The heat accumulating portion is a thermal conductivity of 5 W/(m·° C.) or less, its inner peripheral face is a height (H1) of 10 mm or more and d/2 or less when the diameter of the silicon single crystal rod is referred to as d and the minimum distance (W1) between the outer peripheral face of the silicon single crystal rod and the inner peripheral face of the heat accumulating portion is formed so as to be 10 mm or more and 0.2 d or less, a vertical distance (H2) between the upper rim of the outer peripheral face and the lowest portion of the heat accumulating portion is 10 mm or more and d or less, and the minimum distance (W2) between the inner peripheral face of the quartz crucible and the outer peripheral face of the heat accumulating portion is 20 mm or more and d/4 or less.
    • 在从存储在石英坩埚中的硅熔体中拉出硅单晶棒的装置中设置有隔热构件,并且配备有将来自围绕硅单晶棒的外周面的加热器的辐射热屏蔽的管部 ,设置在管部的下部的隆起部,以及设置在隆起部的内侧的环状积蓄部。 蓄热部的热导率为5W /(m·℃)以下,其内周面为10mm以上且d / 2以上的高度(H <1),或 硅单晶棒的直径称为d,硅单晶棒的外周面与蓄热的内周面之间的最小距离(W 1> 1)较小 部分形成为10mm以上且0.2d以下,外周面的上缘和蓄热部的最下部之间的垂直距离(H 2 2 N)为 10mm以上且d以下,石英坩埚的内周面与蓄热部的外周面之间的最小距离(W 2 2 <2)为20mm以上,d / 4以下。
    • 2. 发明申请
    • Heat shielding member of silicon single crystal pulling system
    • 硅单晶拉制系统的隔热构件
    • US20060124052A1
    • 2006-06-15
    • US10527566
    • 2003-09-12
    • Kazuhiro HaradaYoji SuzukiSenlin FuHisashi FuruyaHidenobu Abe
    • Kazuhiro HaradaYoji SuzukiSenlin FuHisashi FuruyaHidenobu Abe
    • C30B15/00
    • C30B29/06C30B15/14C30B15/203Y10T117/1068Y10T117/1072Y10T117/1076Y10T117/1088
    • A heat shielding member is provided in a device pulling up a silicon single crystal rod from a silicon melt stored in a quartz crucible, and equipped with a tube portion which shields radiant heat from the heater surrounding the outer peripheral face of the silicon single crystal rod, a swelling portion provided at the lower portion of the tube portion, and a ring-shape heat accumulating portion provided at the inside of the swelling portion. The heat accumulating portion is a thermal conductivity of 5 W/(m·° C.) or less, its inner peripheral face is a height (H1) of 10 mm or more and d/2 or less when the diameter of the silicon single crystal rod is referred to as d and the minimum distance (W1) between the outer peripheral face of the silicon single crystal rod and the inner peripheral face of the heat accumulating portion is formed so as to be 10 mm or more and 0.2 d or less, a vertical distance (H2) between the upper rim of the outer peripheral face and the lowest portion of the heat accumulating portion is 10 mm or more and d or less, and the minimum distance (W2) between the inner peripheral face of the quartz crucible and the outer peripheral face of the heat accumulating portion is 20 mm or more and d/4 or less.
    • 在从存储在石英坩埚中的硅熔体中拉出硅单晶棒的装置中设置有隔热构件,并且配备有将来自围绕硅单晶棒的外周面的加热器的辐射热屏蔽的管部 ,设置在管部的下部的隆起部,以及设置在隆起部的内侧的环状积蓄部。 蓄热部的热导率为5W /(m·℃)以下,其内周面为10mm以上且d / 2以上的高度(H <1),或 硅单晶棒的直径称为d,硅单晶棒的外周面与蓄热的内周面之间的最小距离(W 1> 1)较小 部分形成为10mm以上且0.2d以下,外周面的上缘和蓄热部的最下部之间的垂直距离(H 2 2 N)为 10mm以上且d以下,石英坩埚的内周面与蓄热部的外周面之间的最小距离(W 2 2 <2)为20mm以上,d / 4以下。
    • 3. 发明授权
    • Thermal shield device and crystal-pulling apparatus using the same
    • 热屏蔽装置和使用其的拉晶装置
    • US06379460B1
    • 2002-04-30
    • US09644183
    • 2000-08-23
    • Kazuhiro HaradaYoji SuzukiSenlin FuHisashi Furuya
    • Kazuhiro HaradaYoji SuzukiSenlin FuHisashi Furuya
    • C30B3500
    • C30B15/14Y10S117/90Y10T117/10Y10T117/1068Y10T117/1072Y10T117/1088
    • A thermal shield device is equipped in a crystal-pulling apparatus for pulling a silicon monocrystal ingot from a silicon melt reserved in a quartz crucible having an outer peripheral surface encircled with a heater. The thermal shield device has a tubular part to be used for surrounding a silicon monocrystal ingot being pulled and grown in an upward direction to prevent radiant heat from the heater toward the silicon monocrystal ingot. The tubular part has a lower end positioned above a surface of the silicon melt with a predetermined spacing therebetween. A protruding part is formed on a lower portion of the tubular part and filled with a thermal-insulating member. The protruding part extends to the inside of the tubular part and has a bottom wall, a vertical wall, and a top wall. The bottom wall is shaped like a ring having an outer edge connected to a lower edge of the tubular part and extends to the proximity of an outer peripheral surface of the silicon monocrystal ingot. The vertical wall is positioned at a predetermined distance from the outer peripheral surface of the silicon monocrystal ingot and connected to an inner edge of the bottom wall. The top wall has a lower edge connected to an upper edge of the vertical wall and an upper edge attached to an inner peripheral surface of the tubular part and extends in an upward direction with a gradual increase in diameter.
    • 一种用于从保存在具有被加热器包围的外周表面的石英坩埚中保存的硅熔体拉出硅单晶锭的晶体拉制装置中装备有热屏蔽装置。 该热屏蔽装置具有管状部件,用于围绕沿着向上方向拉伸和生长的硅单晶锭,以防止来自加热器的辐射热向硅单晶锭。 管状部分具有位于硅熔体表面上方的预定间隔的下端。 突出部形成在筒状部的下部并填充有绝热构件。 突出部分延伸到管状部分的内部,并具有底壁,垂直壁和顶壁。 底壁的形状为具有连接到管状部分的下边缘的外边缘并且延伸到硅单晶锭的外周表面附近的环。 垂直壁位于与硅单晶锭的外周表面预定的距离处并连接到底壁的内边缘。 顶壁具有连接到垂直壁的上边缘的下边缘,并且附接到管状部分的内周表面的上边缘并且沿着直径逐渐增加的向上方向延伸。
    • 4. 发明授权
    • Silicon single crystal pulling method
    • 硅单晶拉拔法
    • US07282095B2
    • 2007-10-16
    • US10561820
    • 2005-01-25
    • Kazuhiro HaradaNorihito FukatsuSenlin FuYoji Suzuki
    • Kazuhiro HaradaNorihito FukatsuSenlin FuYoji Suzuki
    • C30B15/20
    • C30B15/14C30B15/305C30B29/06C30B35/00Y10S117/917Y10T117/1068Y10T117/1072
    • [Problem] A silicon single crystal ingot in which point defect agglomerates do not exist over a substantially entire length thereof is manufactured without reducing a pure margin.[Solving Means] A heat shielding member 36 comprises a bulge portion 41 which is provided to bulge in an in-cylinder direction at a lower portion of a cylindrical portion 37 and has a heat storage member 47 provided therein. A flow quantity of an inert gas flowing down between the bulge portion 41 in the heat shielding member 36 and an ingot 25 when pulling up a top-side ingot 25a of the silicon single crystal ingot 25 is set larger than a flow quantity of the inert gas flowing down between the bulge portion 41 and the ingot 25 when pulling up a bottom-side ingot 25b of the silicon single crystal ingot 25, thereby pulling up the ingot 25. Alternatively, an intensity of a cusp magnetic field 53 when pulling up the top-side ingot 25a is set higher than an intensity of the cusp magnetic field 53 when pulling up the bottom-side ingot 25b.
    • [问题]制造在其基本上整个长度上不存在点缺陷聚集体的硅单晶锭,而不会减少纯净余量。 遮蔽构件36包括凸出部分41,该凸起部分41设置成在圆柱形部分37的下部处沿缸内方向凸起并且具有设置在其中的储热构件47。 在将硅单晶锭25的顶侧铸锭25a拉起时,在隔热部件36的隆起部41与锭体25之间向下流动的惰性气体的流量被设定为大于 当拉起硅单晶锭25的底侧晶锭25b时,惰性气体在凸起部41和锭25之间向下流动,从而拉出铸块25。 或者,当拉起顶侧晶锭25a时,尖端磁场53的强度被设定为高于尖端磁场53的强度时,拉动底侧晶锭25b。
    • 6. 发明授权
    • Method for pulling up single crystal
    • 提取单晶的方法
    • US07431764B2
    • 2008-10-07
    • US11357826
    • 2006-02-17
    • Senlin FuNaoki Ono
    • Senlin FuNaoki Ono
    • C30B15/14C30B27/02C30B15/30H01L21/322
    • C30B29/06C30B15/20Y10T117/1008
    • The axial temperature gradient G at the vicinity of the solid-liquid interface 24 in an ingot is calculated in consideration of the heating value of a heater 18, the dimensions and physical property values of furnace inside components and the convection of the melt 12 before pulling up the single crystal ingot 15 by a puller 10 by use of a numerical simulation of synthetic heater transfers and a numerical simulation of melt convection. Then, the pulling velocity V of the single crystal ingot is determined from an value experienced of the ratio C=V/G of the pulling velocity V and the axial temperature gradient G of the single crystal ingot at which the single crystal ingot becomes defect-free, obtained when the single crystal ingot was pulled up by a same type puller as the puller in the past, and the axial temperature gradient G calculated by use of the simulations. Then, the ingot is pulled up at the pulling velocity, and the change value of the temperature gradient G to the deterioration value of partial furnace inside components roughly measured while the ingot is pulled up is roughly forecasted by use of the simulations. And further, the pulling velocity V of the ingot is adjusted in such a way that the ratio C should become the value experienced according to the change value of the temperature gradient G roughly forecasted.
    • 考虑到加热器18的加热值,炉内部件的尺寸和物理特性值以及拉伸前的熔体12的对流来计算锭中的固液界面24附近的轴向温度梯度G 通过使用合成加热器传递的数值模拟和熔融对流的数值模拟,通过拉拔器10将单晶锭15提升。 然后,单晶锭的拉伸速度V根据拉伸速度V的比C = V / G和单晶锭的缺陷的单晶锭的轴向温度梯度G的值来确定, 当通过与过去的拉拔器相同的类型的拉拔器将单晶锭拉起时获得的自由,以及通过使用模拟计算的轴向温度梯度G. 然后,以拉拔速度拉高铸块,并且通过使用模拟来粗略地预测温度梯度G的变化值与在锭被拉起时粗略测量的部分炉内部组分的劣化值。 此外,锭子的拉伸速度V被调节成使得比率C应当变成根据大致预测的温度梯度G的变化值所经历的值。
    • 7. 发明申请
    • Method for pulling up single crystal
    • 提取单晶的方法
    • US20060191469A1
    • 2006-08-31
    • US11357826
    • 2006-02-17
    • Senlin FuNaoki Ono
    • Senlin FuNaoki Ono
    • C30B15/00C30B21/06C30B27/02C30B28/10C30B30/04
    • C30B29/06C30B15/20Y10T117/1008
    • The axial temperature gradient G at the vicinity of the solid-liquid interface 24 in an ingot is calculated in consideration of the heating value of a heater 18, the dimensions and physical property values of furnace inside components and the convection of the melt 12 before pulling up the single crystal ingot 15 by a puller 10 by use of a numerical simulation of synthetic heater transfers and a numerical simulation of melt convection. Then, the pulling velocity V of the single crystal ingot is determined from an value experienced of the ratio C=V/G of the pulling velocity V and the axial temperature gradient G of the single crystal ingot at which the single crystal ingot becomes defect-free, obtained when the single crystal ingot was pulled up by a same type puller as the puller in the past, and the axial temperature gradient G calculated by use of the simulations. Then, the ingot is pulled up at the pulling velocity, and the change value of the temperature gradient G to the deterioration value of partial furnace inside components roughly measured while the ingot is pulled up is roughly forecasted by use of the simulations. And further, the pulling velocity V of the ingot is adjusted in such a way that the ratio C should become the value experienced according to the change value of the temperature gradient G roughly forecasted.
    • 考虑到加热器18的加热值,炉内部件的尺寸和物理特性值以及拉伸前的熔体12的对流来计算锭中的固液界面24附近的轴向温度梯度G 通过使用合成加热器传递的数值模拟和熔融对流的数值模拟,通过拉拔器10将单晶锭15提升。 然后,单晶锭的拉伸速度V根据拉伸速度V的比率C = V / G和单晶锭的缺陷的单晶锭的轴向温度梯度G的值来确定, 当通过与过去的拉拔器相同的类型的拉拔器将单晶锭拉起时获得的自由,以及通过使用模拟计算的轴向温度梯度G. 然后,以拉拔速度拉高铸块,并且通过使用模拟来粗略地预测温度梯度G的变化值与在锭被拉起时粗略测量的部分炉内部组分的劣化值。 此外,锭子的拉伸速度V被调节成使得比率C应当变成根据大致预测的温度梯度G的变化值所经历的值。
    • 9. 发明申请
    • APPARATUS AND METHOD FOR PULLING SILICON SINGLE CRYSTAL
    • 用于拉伸硅单晶的装置和方法
    • US20100126410A1
    • 2010-05-27
    • US11996642
    • 2005-07-27
    • Senlin FuNaoki Ono
    • Senlin FuNaoki Ono
    • C30B15/20C30B15/10C30B30/04
    • C30B29/06C30B15/305Y10T117/1072
    • A quartz crucible retaining silicon melt is rotated at a prescribed rotating speed, and a silicon single crystal bar pulled from the quartz crucible is rotated at a prescribed rotating speed. A first coil and a second coil having the rotating center of the crucible at the center are arranged in a vertical direction at a prescribed interval, and currents of the same direction are permitted to flow in the first and the second coils to generate a magnetic field. The first coil is arranged outside a chamber, and the second coil is arranged inside the chamber. An intermediate position of the prescribed interval between the first and the second coils is controlled to be at a surface of the silicon melt or below so that a distance between the intermediate position and the surface of the silicon melt is 0 mm or more but not more than 10,000 mm.
    • 保持硅熔体的石英坩埚以规定的转速旋转,从石英坩埚拉出的硅单晶棒以规定的转速旋转。 具有中心的坩埚旋转中心的第一线圈和第二线圈以规定的间隔在垂直方向上排列,允许相同方向的电流在第一和第二线圈中流动以产生磁场 。 第一线圈布置在室外,第二线圈布置在室内。 在第一和第二线圈之间的规定间隔的中间位置被控制在硅熔体的表面以下,使得中间位置和硅熔体表面之间的距离为0mm以上,但不超过 超过10,000毫米。
    • 10. 发明申请
    • Manufacturing method of silicon single crystal
    • 硅单晶的制造方法
    • US20100101485A1
    • 2010-04-29
    • US12588391
    • 2009-10-14
    • Senlin FuToshio Hisaichi
    • Senlin FuToshio Hisaichi
    • C30B15/22
    • C30B29/06C30B15/305
    • In appropriate setting of magnetic field applied to a molten silicon 12 stored in a cylindrical quartz crucible 11, the maximum value B0 of magnetic flux density on a vertical symmetric axis 17 as a cylindrical axis of the quartz crucible 11 in horizontal magnetic field generated by a pair of exciting coils 13 and 14 calls B0. On circle at which horizontally symmetric plane 18 traversing and perpendicular to a vertically symmetric axis 17 becoming magnetic flux B0 crosses an inner diameter of the quartz crucible 11, the minimum value of magnetic flux density calls Bmin, and the maximum value of magnetic flux density calls Bmax. Those magnetic flux densities B0, Bmin and Bmax are adjusted to be given ranges, and upward flow and temperature of a molten silicon 12 at the lower part of a solid-liquid interface 15a are appropriately controlled.
    • 在施加到存储在圆柱形石英坩埚11中的熔融硅12上的磁场的适当设定中,作为石英坩埚11的圆柱轴的垂直对称轴17上的磁通密度的最大值B0在水平磁场中由 一对励磁线圈13和14调用B0。 在水平对称平面18横穿并垂直于成为磁通B0的垂直对称轴17的圆上,与石英坩埚11的内径交叉,磁通密度的最小值调用Bmin,并且磁通密度的最大值调用 最大 将这些磁通密度B0,Bmin和Bmax调节为给定范围,并且适当地控制固 - 液界面15a下部的熔融硅12的向上流动和温度。